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Summary

A momentum exchange controller where the time rate of change
of the flexible momentum relative to the rigid body motion is used
as a part of a feedback control law for maneuvers and flexible
vibration suppression is introduced. This control concept is
aprliied to: (1) a model of a rigid hub (base) with a cantilevered
flexible appendage undergoing a single axis maneuver; and (2) as a
component of an adaptive feedback control strategy for the
retrieval of an orbiting tethered antenna/reflector system. The
optimal linear quadratic Gaussian (LQG) digital control of the
orbiting tethered antenna/reflector system is analyzed. The
flexibility of both the antenna and the tether are included in this
high order system model. With eight point actuators optimally
positioned together with tether tension modulation it is seen that
the degree of controllability is very high. A method of measuring
tether transverse motions is proposed and is required to guarantee
system observability. An analytical formulation for the modelling
of the solar radiation disturbance on the tethered
antenna/reflector system is introduced. A control law based on
tension modulation where the gains are based on the linear
quadratic regulator theory is able to maintain satisfactory
pointing accuracy for low and moderate altitude orbits under the
influence of solar pressure. For the higher altitudes a
combination of tether tension modulation together with active

(actuator) control will be required.
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l. INTRODUCTION
1.1 Feasibility of Concept based on Existing Work

In an earlier paper [1])  Yasaka suggested that a large Earth-
oriented flexible orbiting antenna system culd be stabilized by
using the gravity-gradient torques through the adjustment of the
lengths of a series of tethers which would be connected between the
feed panels and the reflector surface. The structural feasibility
and a related stress analysis was presented. In a subsequent
related treatment, Bainum and Kumar [2] investigated the dynamics
and stability of an orbiting flexible shallow spherical shell with
a dumbbell connected to the shell at its apex by a spring loaded
double gimballed joint. In addition to providing a favorable
composite moment of inertia distribution for gravitational
stabilization, through the use of internal magnetics, (eddy
current) passive damping can also be utilized. Subsequently,
Bainum and Reddy ([3] have considered the shape and orientation
control of the shell antenna by including active control elements
in addition to the passive damping. Numerical results verified the
significant savings in fuel consumption that could be realized when
the hybrid shell-dumbbell-~actuator system is acting together as
compared with the active thrusters operating alone.

In the first year's contractual effort [4) the basic equations

of motion and related stability analyses for a tethered antenna

‘For references sited in this report please refer to reference
list at the end of ech chapter.
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reflector system during station keeping were developed, and optimal
tension control laws for inplane motion control were synthesized.
It was concluded that additional types of control would be required
for out-of-plane motion damping and also for providing shape
control of the flexible antenna surface.

A comprehensive review of the 1literature related to the
control of various classes of tethered satellite systems for
deployment, station keeping, and retrieval was conducted. Both
linear and nonlinear control laws were reviewed, with the
conclusion that control laws based on optimal control theory offer
the greatest potential for the proposed orbiting tethered
reflector/antenna systems.[4]

The second year's research (5] concentrated on the use of
active control thrusters to provide first order control for the
roll/yaw motions of the shell and also the out-of-plane tether
swing motion. Actuators would be positioned at the end of the
rigid boom, through which the tether is deployed and connected to
the shell, and also placed along the periphery of the shell.
Additional thrusters mounted normal to the shell's largest surface
could also be used in combination with tether tension modulation to
ensure both orientation and antenna shape control.

Control laws were also developed that could be used for
deployment of the tethered antenna system where the actual control
gains could be adjusted in a piecewise adaptive manner depending on
the difference between the commanded and true length and the mass
of the deployed tether. A deployment strategy was also developed

which could be adopted to an orbiting test scale model of the
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system.® Finally, some preliminary results were presented ‘or the
defensive near-minimum time slewing maneuver of the
antenna/reflector with the tether either fully retrieved or
(assumed) separated. The two-point boundary value problem
resulting from the application of Pontryagin's maximum principle

was (numerically) solved by the quasilinearization algorithm.®

1.2 Relevance to SDI and Military Mutibeam Communications
Associated with the capability to orient a large flexible
antenna/reflector type of device accurately while at the same time
maintain the surface shape to within centimeters or even
millimeters are many applications in both the military and civilian
fields. For example, high energy beams can be generated by a power
source and reflected from specific known points on the reflector
surface to preselected targets. In the very important
communications field, such an antenna surface can receive multibeam
communication waves from electronic feed devices and transmit these
to a variety of small mobile receivers to comprise strategic
communication links during early, critical phases of an attack when
larger, fixed land-based antennas would be far more vulnerable to
observation/damage. Such devices could also be employed to
transmit coded electronic mail rapidly over different communication

channels.
1.3 oOutline of the Research Reported

The second chapter introduces the concept of a momentum

exchange controller where the time rate of change of the flexible
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momentum of tne system relative to the rigid body motion is used as
a part of the feedback control law for maneuvers and vibration
suppression. A particular example of a rigid central part
connected to a pair of cantilevered flexible appendages, such as
solar panels, s considered. Lyapunov stability techniques are
used to obtain upper and lower bounds on the control law gains.
With the presence of this type of feedback control, an additional
independent control system acting on the flexible parts can be
designed for further vibration suppression. A paper based on this
research was presented at the AAS/AIAA Astrodynamics Specialist
Conference, Durango, Co., Aug. 19-22, 1991.

The next chapter also uses the momentum exchange control
technique as a part of an adaptive feedback control concept for the
retrieval of the orbiting tether antenna/reflector system. The
time rate of change of that part of the angular momentum due to
the tether motion from the local vertical is used as a part of the
feedback law for the antenna attitude control system. This is used
in conjunction with an open-loop exponentially decreasing tether
commanded length control during retrieval. The selection of the
dimensionless control gains is b~"sed both on system stability
considerations when the system is 1linearized about a given
reference length, and on numerical simulation of the nonlinear time
varying system. The feedback control gains are then adapted to the
instantaneously changing tether length. This chapter is based on
results presented in a paper at the Second Joint Japan/U.S.A.
Conference on Adaptive Structures, Nagoya, Japan, Nov. 12-14, 1991.

Chapter 4 considers the optimal LQG (linear quadratic
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Gaussian) digital control of the orbiting flexible tethered antenna
system. The flexibility of both the tether as well as the antenna
(shell) is included. A comprehensive computer simulation program
is developed to also include the important effects of state
measurement, plant and measurement noise, system controllability
and observability. The LQG technique is employed to synthesize a
controller with the Kalman filter to deal with measurement and
plant noise in the presence of sampled data observations. The
optimum number and location of the actuators are determined by
means of the concept of degree of controllability and related
numerical simulations. The results contained in Chapter 4 willl
also be included in a paper accepted for presentation at the
AAS/AIAA Space Flight Mechanics Meeting in Colorado Springs, Co.,
Feb. 24-26, 1992.

In the following chapter the effect of solar radiation
pressure on the tethered antenna/reflector subsatellite systenm is
considered. The solar radiation pressure is one of the dominant
sources of disturbances, especially in the higher altitude orbits.
One of the objectives of Chapter 5 is to develop the analytical
formulations for the modelling of solar radiation disturbance
torques on the tethered antenna subsatellite systemn. A second
objective is to evaluate the effects of these disturbances (for
station keeping operations) to determine at what altitude levels
the tension control law is still able to maintain the required
pointing accuracy, and to develop a hybrid compensation control
strategy (involving tether tension plus some kind of actuators

attached to the antenna) for the situations where the tension
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modulation control alone can not meet the mission pointing
accuracy. Papers based on this chapter (Chapter 5) have been
offered for possible presentation at the 1992 AIAA/AAS
Astrodynamics Conference, Hilton Head, S.C., Aug. 10-12, 1992 and
also at The World Space Congress (IAF/COSPAR), Washington, D.C.,
Aug. 28-Sept. 5, 1992.

Chapter 6 summarizes some concluding remarks and suggestions

for further continuing research.
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2. MOMENTUM EXCHANGE: FEEDBACK CONTROL OF FLEXIBLE
SPACECRAFT MANEUVERS AND VIBRATION

The momentum exchange controller in which the time rate of
change of the flexible momentum relative to the rigid body motion
is used as a part of the feedback control law for maneuvers and vi-
bration suppression of fiexible systems is introduced. A particular
model of a rigid hub (base) with a cantilevered flexible appendage
undergoing a single-axis maneuver is considered. The feedbhack
control on the hub includes the rigid body motion and the time rate
of change of that part of the flexible momentum resulting from flex-
ible vibration. The lower and upper bounds of the control law for sys-
tem Lyapunov stability are obtained, and the relationship of the con-
trol law with the energy Lyapunov test function is established. With
the presence of this feedback control, an additional independent
flexible control system acting on the flexible parts can be designed
for further vibration suppression. This hybtid control system can be
applied to both stationkeeping and large angle maneuvers. Both
analytical and numerical results are presented to show the theoreti-
cal and practical merit of this approach.

2.1 Introduction

The control of flexible systems usually requires the controller to provide the control
effort for maneuvering or targeting of the flexible systems/subsystems (such as anten-
nas and telerobots) with the simultaneous vibration suppression. For instance, one of
the major problems with robotic manipulator systems is the assembly time lost while
waiting for the vibration suppression of the end of the manipulator aim.
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The mathematical modelling of flexible systems involves the coupling of finite and
infinite ordered mathematical subsystems-the rigici hody motions described by ordi-
nary differential equations and the flexible motions described by partial differential
equations.The control objective is to maneuver the rigid body and suppress the flexible
vibration simultaneously for targeting, ot to suppress both motions for stationkeeping
Most previous approaches to this problem resorted to the discietization of the continu-
ous systems into finite dimensional systems as the first stage of the process for control
law design. It is commonly recognized that the discretization procedure inevitably in-
volves modeling errors and control spillover issues. Also, since the frequencies of the
flexible vibration are usually much higher than those of rigid body motions. the coupling
of these two motions will result in the stiffening of the system differential equations. As
a consequence, the numerical solutions to the traditionally optimal approaches. such
as minimizing a quadratic cost functional or minimum - time bang -bang control. are
usually difficult to solve because of the inherent nonlinearity and stiffness of the result-
ing differential equations. In addition, the algorithms and control laws are usually sensi-
tive to modeling errors and may lack robustness.

In order to suppress the flexible vibrations, certain quantities that contain the informa-
tion about the flexible motion of the distributed systems are needed for the feedback
controller. What are these quantities for continuous mechanical systems? From the
viewpoint of dynamics, the rigid body motion and the flexible motion interact with each
other by means of momentum exchange during maneuvering: hence, that part of the
flexible momentum resulting from the flexible motion is expected to contain the informa-
tion about the flexible vibration and can be used as a part of the feedback law. The main
purpose of the present paper is to introduce the so-called momentum exchange con-
trol concept which is illustrated by the application to a particular model of a rigid hub
with a fiexible appendage beam undergoing a single--axis maneuver. The proposed
control acting on the hub includes the feedback of the rigid body motion and the time
rate of change of the flexible momentum of the beam (combination of the flexibie
modes). We will strictly prove the stability of this control law by using a Lyapunov test
function, and the lower and upper bounds of the control law for system Lyapunov stabil-
ity will be obtained. Many interesting and important implications of this control concept
will be demonstrated with the development.

Concerning the related research, attention should be directed to recent impressive

work by Junkins, et al''? | in which the maneuver and vibration suppression of a rigid
hub with flexible appendage beams was considered. and the proposed control law in-
volved the feedback of the combination of the root shear and bending moment of the
beam which theoreticaily was equivalent 1o the time rate of change of the angular mo-
mentum of the beam - rigid plus flexible momentum. The idea was innovative and the
resulting control was easily implemented from the viewpoint of measurement: however.
from the viewpoint of the present investigation. it appears that the inclusion of the rigid
momentum of the beam into the feedback control law is redundant and may corrupt the
information about the flexible vibration with possible degradation of the system per-
formance. This argument is further supported by the fact that there is no tinite upper
bound limit of the control gains required for system stability in Ref.[1]. The correspond-
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ing version of the development of Junkins' control law is given in Appendix A for the
purpose of comparison.

Another aim of the present paper is to design an additionalindependent flexible feed-
back control system for further vibration control. independent flexible feedback control
means that the feedback of this control system does not depend either upon the open -
loop rigid body maneuver strategy or on the precalculated reference flexible motion; the
feedback depends only onthe instantaneous flexible displacements and velocities. Ba-
ruh and Siverber g first suggested separating the maneuver and vibration control prob-

lem” . Itwas proposed to suppress the vibrations by the natural modal control which did
not affect the rigid body maneuvers in the sense that the control forces conserve the
linear and angular momentum of the rigid body motion.

Together with the presence of the control acting on the rigid hub in the current paper.
additional natural modal control acting on the flexible beam for further vibration sup-
pression will also be employed. This hybrid control system is said to be independent
in the above sense. and it will be shown that the system stability is guaranteed as long
as the flexible control forces or torques are energy -dissipating.

In summary, the objectives of this paper are to: (1) present a kind of momentum ex-
change feedback control concept and prove the system stability by the Lyapunov direct
method; (2) design an additional independent flexible control system for further vibra-
tion control; (3) apply this hybrid control system to the large angle maneuver problem
of the flexible system: and (4) demonstrate the feasibility and practical merit of this ap-
proach by numerical simulation.

2.2  Momentum Exchange Feedback Control

A rigid hub (base) with a cantilevered flexible appendage is considered. The append-
age is considered to be a uniform flexible beam. and the shear deformation and distrib-
uted rotary inertia are neglected. The beam is assumed to undergo small deformations
so that linear elastic theory can be applied. The axial deformation is also neglected. Mo-
tion is restricted to the horizontal plane. and. at this stage of development. only a control
torque acting on the hub is considered.

With reference to Fig. 1, the position w0 vl

vector of a differential element, dm. in _ 4 .
the undeformed body-fixed frame, can g/‘ <
3

be expressed as’

/.
| i /

+yi (1)

T

r=x

|
The inertial velocity of dm can be obtained as:
r=-y0i+(xp+y)i (2)
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Therefore, the total inertial angular momentum with respect to point O can be written
as:

H=1 60k + f[x( y+XO) by A ) dmk

/
=[ {1, +1)e +f“( Xy +y a)dx |
/
where
I, is the moment of inertia of the rigid hub w.rt. the point O.

Iy, = IDX2 dx is the moment of inertia of the undeformed beam .

That part of the angular momentum associated with the beam’s flexible motion is Je-

noted H, = ;p( X y+y?q)dx.andis called the flexible momentum of the beam.
A

After applying the Euler-Newtonian equation of motion, one can obtain the rotational
motion equation for the rigid body motion as:

('h+|b)é+'g-tHf=U(t) (4)

where u(t) is the control torque acting on the hub.

The partial differential equation governing the elastic vibration of the beam can be writ-
ten as:

“(3324-)(31?)”51%4 =0+ HOT (5)

The H.0.T. denotes higher order terms which include other known effects [ such as rota-

tional stiffening (y 62) , shear deformation, etc.]. The fundamental development given
here does not consider these higher order terms.

The boundary conditions on Eq.(5) are

= dy
t. =
at x=1_ y(t.s,) ax|x=/‘_o

= a_’.v _ay
at x=1/ i ax’x/—O

A feedback control law for stationkeeping is introduced as:
u) = -k.0 - k.o -y SH. (7)

The purpose of the first two feedback terms in (7) is straight-forward, providing the feed-
back control for the rigid body motion of the system:; the last term in (7) is the feedback
of the time rate of change of the flexible momentum of the beam and involves nonlinear
output of the fiexible motions.

2.4




Note that the form of this feedback control is different from that presented in Junkins.

atel' 2. where the control involved the feaciback of hoth the root shear and bending mo-
ment of the beam, and the combination of these moments was equal to the time rate
of change of the angular momentum of the beam' rigid plus flexible momentum.

However, the selection of the Lyapunov function for system stability here is similar
to that in Ref.[1]. the slight difference lies in the first term of the Liapunov function The
Liapunov test function ( “error energy”) is taken as the following form:

V=_;.a‘(|h+;b)9+;a9 +—a]fp( +X0) dx+fEl(3—y ) dx | (8)

The first term is the kinetic energy of the rugld body motion of the system: the second

term aze “the torsional spring energy " is added to makethe finalstate (6. 4. Y, &y )

= (0,0,0,0) be the global minimum of V; the third term is the kinetic and potential energy

of the beam. The weighting coefficients a, are included to allow relative emphasis upon
the three contributors to the “ error energy * of the system.

It is obvious by inspection that imposing a;>q. guarantees that \'> 0, and that the
global minimum of V =0 occurs only at the zero state. Differentiation, substitution of the
equations of motion (5) and boundary conditions (6). and some calculus manipulations
lead to

v=a(l, +1,) 66+2a,00+a,6 El (I, 3x,| e %—x{ ) (9)

Furthermore, for the rigid hub, we have

'y 3y
'he =u- El(lﬁaxj ‘/"‘ aX2|

) (10)

Upon substituting (4), (7). and (10) into (9), one can obtair:

a,l, a.l
v k 3b - _ a'h 3b
{ta, (a+|h+|b)le k,{ a+—-—~-|h+| )6 -[(a, ——'ﬂ+'h)+v(a T )] i H }e
(11)

In order to meet the requirement that V < Oto guarantee stability, two of the coefficients
in (11) are set to zero:

a.l

a,-k(a+—2)=0 (12)
L+,
|
(8- 20 ) 4y(a 428 ) _ g (13)

I+l +1

'h b
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In this case, ¥ becomes

: ade .-
— —_— < |
k.(a, NN bA =0 (if k.>0) (14)

Eqs.(12-14) lead to the following control gain requirements:

g (I +ls)
l= >
al, +a(l, +1,) =0 (16)
3 ajl, -a(l, +1,)
'S Al a4, (17)
Since a =0, it can be easily proven that

-1V <L '—h (18)

Iy

and y--1 whena,-q; v=1, /I, whena-0 "

Thus a finite lower and upper bound re- it

stricts the size of the control gain, v. It o
should be noted that there was no such o
finite upper bound limit in Reff{1,2]. .
Fig.2 shows y as afunctionof a,/3 . 'L

Fig. 2 v as a function of a,/a,

Now attention is directed to the significant physical meaning of this feedback control
faw. According to £q.(8). 4,/a, corresponds to the relative contribution of the flexible
motion and the rigid body motionto the system error energy. When a,=0 whichcorre-
spondsto y=-1, the “ error energy " Lyapunov function does not contain the flexible
energy term. In other words, the emphasis is totally put on the control of the rigid body
motion. For the case where v=~1 it can be seen from Eqs.(4) and (7) that the effect of
the flexible momentum, H, , is removed from the closed -loop rigid body motion equa-
tion. Thus, the controller completely compensates for the flexible motion and the rigid
body motion is not disturbed by the flexible vibration. Here a two-lumped mass beam
model is used to approximate the continuous beam (Fig.3); however, the theoretical de-
velopment and the validation of the results do not depend on the discretization proce-
dure. Fig.4 and Fig.5 show the transient re sponses of the rigid body motion and the flex-
ible motion. respectively, wherein the point 2 is the outermost lumped mass. The three
cases considered are: v=-1, maximum emphasis on the rigid body motion (complete
compensation for the flexible motion); v=0, no feedback of the flexible momentum;
v={n/l,=1.83. maximum emphasis on the flexible motion. It can be seen that with the
increase of v (larger relative emphasis on the suppression of the flexible motion) the
dissipation of the flexible vibrations is better, and that the rigid body motion is subjected
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to more disturbance. but the disturbance is not so large as to degrade the rigid body
motion seriously. Therefore. in practical applications the control gain can be selected
according to the requirement for the 1igid body motion and the flexible vibration sup
pression, and it is a kind of trade- off. The selection of the control gain can be further

enhanced by combining some optimum criteria” .

Also. it should be noted that bounded restrictions for the gain 1+ are only sufficient
conditions for system stability; however. from the present simulation. itis seen thatthese
restrictions are close to the necessary conditions for system stability, especially the low-
er bound condition. Fig.6 and Fig.7 show that when the 1 exceeds the lower bound the
flexible motion becomes unstable and vice versa, when the 1 exceeds the upper bound
the rigid body motion diverges.

The system performance will generally depend on the ratio 1,, /11, . Fig. 8 and Fig.
9 show the system responses corresponding to three different ratios. It is seen that if
this ratio increases, the flexible vibration will be usually easier to be suppressed and the
rigid body motion will also decay more quickly with a little bit larger overshoot at the be-
ginning. Aiso, from the simulation results, it is seen that this control law is robust in the
presence of other unmodelled factors and modelling errors, and the robustness will de-
grade when the control gain v approaches its boundaries.

.3 Independent Flexible Control for Elastic Vibration

in Section |I, it has been demonstrated that the feedback controller located on the
rigid part of the spacecraft can perform the maneuver and simultaneous vibration sup-
pression, and the system stability is guaranteed as long as the control law gains are
within a certain range. However, it is of interest to further control and suppress the flex-
ible vibration while the spacecraftis going through large angle rotations and large tians-
lations. To achieve this, another independent flexible control system acting on the flex-
ible appendage is proposed.

Baruh and Silverberg3 proposed a natural modal control for the independent elastic
control system. They have proven that the natural control forces conserve the linear and
angular momentum of the spacecraft and. therefore. do not appear on the right-hand
side of the rigid body equations. However, the rigid body motion is still affected by the
flexible motion via the kinematic and dynamic coupling which is sometimes very impor-
tant. With the feedback control presented in Section Il, it will be proved that the system
stability is guaranteed as long as the elastic modal control system is an energy -dissi-
pating system. To prove this, itis assumed that u, is the feedback natural modal control
on the flexible appendage; hence, u, can be written as

Ue=Zd. 1, (19)

where ¢, is the rth natural modal shape corresponding to the flexible motion and f,
is the corresponding modal control force which can be designed in the modat space
using various methods, such as optimal LQR, pole assignment, or velocity control.
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In this case. Eq.(5) becomes

Ay

M e Gnoea = (20)

The Lyapunov function is taken the same as (9). Using the orthogonality relation of the
natural modal control (see details in Ref [3]). and after similar manipulations, the cleriva-
tive of V can be obtained as

v = right-hand side of Eq.(14) + [py udx (21)
Therefore, if |

!
fryudx<o (22)
I
which means the control forces are energy-dissipating. then V <0 and the svstem i<
stahle.

Note that truncation of natural modes (finite control) does not change the discussion
here. However, in reality it is aimost impossible to obtain the exact natural mode shapes
which are usually approximated by discretizing the continuous system model; the pro-
cess of discretization inevitably introduces natural control errors. From the simulation
results here. the momentum exchange control law is robust and can endure these er-
rors induced from approximating the natural modal shapes. The simulation results
show that the addition of this elastic contrul sy stem further suppresses the elastic vibra-
tion and improves the system responses (Figs.10-11).

2.4 Large Angle Maneuvers

For large angle maneuvers, a reference open-loop rigid body maneuver is adopted.
denoted by the subscripts as {8,(1 6,1 6. um} satisfying

(1, +1p)8,=um (23)

and the prescribed boundary conditions. The variables without subscripts represent
the actual solutions to the system equations (4). (7). and (20).

The tracking control law takes the following form:
u(t)=ur-k,(e-ef)-kz(é‘ér)_y-cdﬁH! (24)

The "error energy” Lyapunov function is modified as |

=1 PRI oy + 1 dy o’
v—2a,(l,,+'b)(e er)+2a2(6 ) +2a,{7fo[2—t-+x(e 8.)] dx

{
Ly,
+;[El(3—yx=) dx ] } (29)
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5

The same manipulations as in Sect. Il lead to

o a,l, _ A
V-{[az-k.(aﬁ"h——'b)]("’ 6e) -k (as ) (n-a) (26)
[(a a,lh_)+\,(a+ alp )]-d-H (A=A, )+a rlw' dx -a / ’ 2

ST ARG H AR v, [y udx-a foxy ax o,

Again, the tracking control laws are subjected to the same requirements asin (15). (16).
and (17). In this case,

{ {
- aly ., . 2 . : .
v ——kz(a‘+—+ )(e-6.) +a,f“y u, dx - a,’fpxydx P (27)

I, +1
htin ;

in which the first term is semi-negative definite; the second term is negative definite if
the flexible control force is energy-dissipating; and the sign of the third term is generally

varying. Therefore, as a whole, we cannot say the \' is negative. In effect. the system
has continuous inputs and the flexible vibration will be excited during large angle ma-
neuvers. However, it is hoped that with this hybrid control the flexible vibration will be
suppressed and that bounded-input/bounded-output viewpoint of stability can be es-
tablished.

It is not the purpose to discuss the open-loop maneuver strategy here. A reveiew
about this subject can be found in Ref.[4]. For the purpose of demonstration, a mini-
mum-time maneuver strategy which is a bang--bang law is considered. It is recognized
that a minimum-time maneuver bang--bang law will excite the flexible vibrations exces-
sively, and it is intentionally used here to show the effectiveness of the proposed hybrid
feedback control.

For quick large angle maneuvers, k, , k, are usually taken to be zero. Notice that in
this case the remaining feedback term (--p-d H,) does not depend on the open-loop
maneuver strategy and the precaiculated corresponding reference flexible motion. The
results of a 90 degree minimum-time maneuver are shown in Figs.12-14. itis apparent
from Fig.14 that the deflection of the outermost lumped mass (point 2) is reduced by
almost half when the flexible momentum is included as a feedback term in the tracking
control law.

Conclusion

A kind of momentum exchange control law for maneuvers and vibration suppression
of flexible systems, wherein the time rate of change of the flexible momentum is used
as a part of the feedback control law, has been presented. The theoretical analysis for
system stability by using a Lyapunov function is rigorous without resort to the disctreti-
zation of the continuous system, and the lower and upper bounds of the control gains
for system stability have been obtained. For further vibration suppression. the natural
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modal flexible control system is used in conjunction with the momentum exchange con-
troller. This hybrid control system has also been applied to the large angle maneuver
of the flexible system in which the minimum -time open- loop maneuver strategy is
used. Simulation resuits have shown the effectiveness of this control system for both
stationkeeping and minimum-time maneuvers.

This study is interesting and significant for understanding the behavior and control
of distributed mechanical systems. It is noteworthy to see that just the single output
feedback of the time rate of change of the flexible momentum contains enough informa-
tion for the controller to suppress the vibration of continuous systems (infinite order sys-
tems). Also, the momentum exchange control law tends to be of a nonlinear form of the
flexible displacements. This study has demonstrated the prospect and efficacy of using
nonlinear control in some specific systems such as mechanical systems. Another key
point is the usefulness of Lyapunov functions in the control problems of distributed sys-

tems.
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Apendix A. A Comparison of Junkins' Control Law with the Present Law

In Ref. [1,2], Junkins, at el, presented a Liapunov control law design for the maneuver
and vibration suppression of flexible systems. The model considered was a rigid hub
with flexible appendage beams undergoing a single axis maneuver, and each beam
had a finite tip mass. For easy comparison. only one appendage and no tip masses are
adopted in the following development of Junkins' control law. In terms of the notations
of Ref [1]. the system equations of motion are:

'hd'ag:U"'(Mo'Sq/,,) (28)
[ s .
- 3 de
_(Mo_sglo)—lf{‘)(( Tt!’+ X a‘t—_ )dx (29)
3y d’o 3y
Mg +x gn ) YB35 = 0 +HOT (30)

where ( M, S.) denotes the bending moment and the shear force. at the root of the
beam, respectively, and (30) satisfied the same boundary conditions as (6)

After substitution of (29) into (28), one can obtain
('h+'b)é+§‘iH'=Um (31)

M is the flexible momentum of the beam.

The control law of Ref.[1] is taken as the form:
u=-19,0+9,0 +9,(M,-S./.)] (32)
After substitution of (29) into (32), the control law can be rewritten as
u=-(g,0+9,0+0,( lhé+d2tH.)] (33)

Notice this control law is different from (7) in that the third term of (33) involves the extra
time rate of change of the rigid momentum of the beam.

In order to show the difference, we use the same Lyapunov function (8) as the test

function. In this case, the same manipulations as in Sect. J| lead to the following require-
ments for the control gains:
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g9,>0
Call+ 1)), ]
Toajd,+all, 41

(34)
a,l,

g = b —_ "
=1 a(l,+1,)

In this case. the derivative of the Lyapunov function

v o=- a (1, +,) 52

I

(39)

From (34),
g, > -1 and without finite upper bound

Also, from (34) and (395), it is seen that it a, is fixed and if a, is increased ( means the
increase of the relative contribution of the flexible motion to the error energy Lyapunov
function), the gain g, will become large; however, the v is unchanged. This means
physically that increasing the control gain g, , unlike increasing the control gain .. will
not automatically increase the suppression of the flexible motion. Therefore. it is con-
cluded that the inclusion of the rigid momentum into the feedback control law is not nec-
essary and may corrupt the feedback information with possible degradation of the sys-
tem performance.

It is easily seen from EQq.(29) that the combination of the root shear and bending
moment is equal to the time rate of change of the rigid momentum plus the fiexible mo-
mentum of the beam. Therefore, the realization of the current proposed control law is
not difficult; the flexible momentum feedback term can be realized by measuring the
root shear force, root bending moment, and the angular acceleration of the hub.
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Table 1 Spacecraft Dimensions. Appendage Material

Radius of the rigid central body, /. 1.00 m
Length of the appendage 20.00 m
Appendage material stiffness, El 1500.00 N-m 2
Appendage material density, p 0.04096 kg/m
Mass of the rigid hub 400.00 kg

Total rotational inertia, 1, +1,
Inertia ratio, In /1,

309.1863 kg-m’
1.83

t)
gMu( LU

Uz(‘)
@i{ - 7 :
{
r—l p ‘

Fig. 3 Lumped-Mass Modet for Numerical Simulations
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Theta ldeg)

— V=-{, maximum emphasis on the rigid body mation °
- V=0, no feedback of the flexible momentum
— --V={.83 maximum emphasis on the flexible motion
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Fig. 4 Rigid Body Rotation Responses in Stationkeeping
under Different Stable Control Laws
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Fig. 5 Flexible Vibration Responses in Stationkeeping under
Different Stabte Control Laws (IC's the same as in Fig.4)

Note: k,=618and k,=773in Figs. 4-11 and k, . k-=0in Figs 12 14
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Fig. 6 Flexible Vibration Response when 1 Exceeds the Lower
Bound of Stability Range (IC's the same as in Fig 4)
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Fig. 7 Rigid Body Rotation Response when 1 Exceeds the
Upper Bound of Stability Range (IC'sthe same asinF ig.4)

2.15




\ GDeﬂection of Point 2 (m)

u2(0) =2m
2F po=0 =11, =438 (= 15m)
i r=l /1, =183 (=20m)
1 {Jls e =/, =094 ((=25m)
l
0.6H |, v
' e I A
o \l . .r‘., L .‘\‘1".‘ T —— ——
v, [ ‘
- = A al
0.6 R Ivh o
Sl
-1 - [
-1.8 L 1 1 1 ! 1 L 1 L
0 _2 4 é 8 10 12 14 16 18 20

' . Time (s)
Fig. 8 Transient Responses when the Ratic I,/ 1, Changes

R Theta (deg.)

— [=15m . =20m -- ;=25m

.‘ 1 i L 1 1 1 1 ) 1
o 2 4 e 8 10 12 14 1’ 18 20
Time (8)

Fig. 9 Transient Responses when the Ratio 1,/ 1, Changes
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Modal Control
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3. Adaptive Feedback Control for the Retrieval of an Orbiting
Tethered Antenna/Reflector System

ABSTRACT

An adaptive feedback control concept for the retrieval of an orbiting tether
antenna/reflector system is introduced. In conjunction with an open-loop
exponentially decreasing tether commanded length control, an attitude control
system acting on the antenna is used for stabilizing the antenna as well as
suppressing the tether swing librations through the control of the attitude motion ofthe
antenna(base). The momentum exchange control technique wherein the time rate of
change of the part of the angular momentum associated with the relative motion of the
tether is used as a pait of the feedback is applied to the control law design. The
selection of the dimensionless control gains is based both on the consideration of the
stability of the system linearized about a reference length, and on the numerical
simulation of the actual nonlinear, time-varying system. The control gains are adapted
to the instantaneously changing tether length. Numerical results are used to verify the
control concept.

3.1 INTRODUCTION

Since the early 1970's a number of very large space antennas have been
proposed for power transmission, astronautical research, and communications. The
gravity stabilized configuration is particularly suited for very large flexible systems to
alleviate the problems associated with the active attitude control of very large
structures. An orbiting tethered antenna/reflector system has been proposed for
possible communication or military use[1,2]. The subsatellite is nominally depioyed
below the antenna along the yaw axis at a sufficient distance (1km) to provide a
favorable composite moment of inertia ratio for gravitational stabilization. It is
assumed that the tether would be deployed through the end of a rigid boom attached
to the shell(antenna) apex. The purpose of the present paper is to investigate the
control strategy for the retrieval of the tethered antenna system.

It is well-known that retrieval is basically unstable because of the excitation of
both in—-plane and out-of-plane librations and insufficient tension during the terminal
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phase. Many investigators have studied the tether deployment/retrieval problem.
Most of the previous approaches on retrieval were based on modulation of the tether
tension; however, tension control will not be effective for short tethers because of the
low level of the gravity gradient, and it is found that the tension control without a
constraint on the minimum tension level could easily lead to a slack tether.

Based on the momentum exchange control concept introduced in a recent
paper[3]. a new control strategy for suppression of the tether swing librations during
retrieval is proposed in the present paper. It is proposed that together with an
open-loop exponentially decreasing tether commanded length control an attitude
feedback control acting on the antenna be utilized for stabilizing the antenna as well
as suppressing the tether in—plane swing libration. The resuiting feedback control law
would include two components. One component involves the linear feedback of the
antenna rigid body motions for the purpose of guaranteeing the stability and
convergence of the antenna attitude motions. The dimensionless feedback gains of
this part are adapted to the initial and final phases of the retrieval. The other
component involves a feedback of the time rate of change of the part of the angular
momentum associated with the in—-plane motion of the tether relative to the local
vertical. The purpose of this part of the feedback law is to provide the information
about the tether in—plane swing motion for the controiler to suppress the tether swing
motion (momentum exchange control). The dimensionless gain for this part is
selected based both on the consideration of the stability of the system linearized about
a reference length and on the numerical simulation of the actual nonlinear,
time-varying system. The gain is adapted to the instantaneously changing tether
reference length. The possible practical advantage of this new approach over
traditional tension control during retiieval is that the longitudinal vibration induced by
this control method should be less than that induced by tension control; in general,
tension control will directly excite the longitudinal vibration. It has been observed that
longitudinal vibrations and wave propagation may present serious problems for tether
operations, and the solution to these problems is being sought.

THE SYSTEM EQUATIONS OF MOTION
For system modelling the following assumptions are made:

+ The shift of the center of mass of the system is neglected. The center of mass is
assumed to lie at the same point as the center of mass of the antenna, and the center
of mass of the system is moving in a circular orbit.
« The flexibility of the shell, boom, and tether is neglected and the tether is assumed
uniform with a constant mass per length.
» The symmetry axis of the shell is nominally along the local vertical.
* The subsatellite is considered as a point mass.

The Newton-Euler method has been adopted to develop the system equations
of motion. The coordinate systems used in the development of the system equations

3.2




of motion are showninFig.2. OyX,Y,Z_ is an orbit-fixed reference frame centered at
the center of mass of the shell, O,, with O.X, alongthe local vertical and O,Y, along
the orbit normal opposite to the ortital angular velocity vector. O, X.Y,Z, is a
shell-fixed reference frame, R, , where O,X,, Q,Y,. 0, z, are the principal axes of
the sheil. OXYZ is the tether-fixed reference frame, R, , with OX along the tether line.
where O is the point from which the tether is deploying. The coordinates of point O in
the shell frame, R,, are ( h, ,0,0)

The Euler angles, s, 8, ¢, are the yaw, pitch . and roll angles of the shell,
respectively. ««. y are in-plane and out-of-plane swing angles of the tether.
Therefore, the whole system has the following degrees of freedom:

W, 8, ¢ ———— rigid body motion of the sheli
a, y -——- librational motion of the subsatellite
I ——— length of the tether

The transformations from O,X,Y,Z, to OpoX,Y,Z, and from OpX,Y,Z, to OXYZ are
given by

X, COHCH  Sd i+ CHsPSY  ShSW— ChSHOY X
Y, | =] -soco chQir—sosnclr cosw = soshar || o (1)
% S0 — oS o Qv ”

[xyz] =T ( ¥)| x, ¥ 2, ]T

where -Cycox Sy sacy
T(axy)=] sycx oy _sasy (2)
- S 0 - CQ

s —sin( ). ¢ —cos()

Consider an elemental mass, dm. whose instantaneous position vector from the
center of the shell, O, , is T (Fig.2). The equation of motion for dm can be written as

adm = fdm +edm 3)
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where
a = inertial acceleration of cdm
T = gravitational force per unit mass
€ = external forces acting per unit mass

The gravity force in the shell frame, R, is given by [4]

[=f+Mr (4)
where f'0 is the gravity force at O, expressed in the frame, R,. and
3C0c =1 —1SpChCA  3CHSAOD

M =w! |_2s6ChCD  3SbcA—1  —256C0SH
ICHSO N —3SHOSH 350 -1

where w, is the orbital angular velocity.
The vector equation, (3) , can be written in the frame, R», as

[3,~T, 471 +20xT +@ x (OxT) + @x T-MT]dm-Cdm =0 (©6)
where
P 0 s + WCHCO - w, (SHCUr+ C s i)
= lw | = 0C = & Sheh - o (CHCU_ SA508) ()
w, b+ sh + . COSY

The shift of the center of the mass of the entire system from the center of the antennaiis
neglected, that is, f—0 = 50 . After projecting equation (6) on the tether frame, R, . the
following is obtained

T[#+25x?+5x(ax?)+$x?—M?]dm-—(—:lldm=0 (8)

where |. indicates the projection onto the frame, R, .

The expression forthe T of the tether system is different from that of the shell due to
the relative motion of the tether, so we consider the tethered subsatellite system and
the shell system, separately.

TETHERED SUBSATELLITE SYSTEM
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where 1 =( x. 0, 0 ) isthe position vector of dm from O projected onto the frame.
R.. h=(h, n.0) isthe positionvector of point O fromthe shell's center of mass. O.

Hence,
=T T+T T
(10)
r=T'F+27 7 +T T,
According to vector algebra
wxT+@x(wxt) -MT =[Q]F
[Ql={s] +[@1(&] ~[M] ()
where
0 -w, wy
[_(;Jl = w, 0 - Wy

Wy Wy 0

After substitution of equations (10)-(11) into equation (8), there results
adm-<ldm =0 (12)

where

a =7, 42l TE+TlIT T+ TED+2T e (FH+TIQ T,

_ 13
+T[Q I ()
Let R A
[TTH+Tle)T' 1= Q, 0 -0
-0, Q. 0
.. . | wll le wl.‘
[T(TY) + 2T[w)(T) + TOIT | =|w, w, w,
w

M w 2 w.‘.‘
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<

TIQ|h = h

m™ora
) [

The expressions for some terms are listed in Appendix A.

Also, let [x=fxdm H, =fx~’dm
s.t <)

By projecting Eq.(12) along the X, Y, and Z axes and integrating the result over the
subsatellite and tether, the translational equations of motion can be obtained as

(m“f‘m,)l + [xw;|+(ms+n]')h\,gl= fo
2(ms+“")/ﬂz+lxw:|+(m§+m,)hxg3= F. (14)

-2 (ms+mt)1'Q_\,+1xw,l+(ms+m,)h‘ g.=F

tz

where F F, F_ are three components of the force exerted on the tether by the
shell. No other external forces acting on the tether and subsatellite are assumed. The
equations of rotational motion of the tether can be obtained by the following operation:

[ Ex(Eq021=0 (15)

st

By projecting Eq.(15) along the Y and Z axes, respectively, the rotational equations for
~the in-plane and out-of-plane motions are obtained as

Zl‘Qyi~H“w3|_hxlxgg=() (16)
2LQ, +H w, +h . g,=0 (17)
SHELL SYSTEM
The torques exerted on the shell are

L=1L,+L, (18)

where L. is the gravitational torque and L the torque by the tether whose
components in the shell body frame, R, . can be obtained as

$ecesd(J, -J,)
Lo=3w [-secocd (], -J,) (19)
cosded( J 1)
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B

L= h | SQCVF  -sosYF e F, (20)

=S le ~CY F>\

where J.., are the shell's principal moments of inertia. Upon applying the
Euler-Newtonian equations, the equations of motion of the shell attitude motion can
be obtained as

Jow, (3, -1,)0 w0, = 3(1)3 s9cosh( L -J,) + L
Jewy =(J, 2] )0, 0y ==3w $6¢0ch (], —~J ) +h (sacYF, -sasYF, -ca F,)+ L

560, - (3~ 3, ) wew, = 302 oS (I, ~J) -l (SYF, + CYE, )+ Lo (21)

where the forces F,_ F_ F, have already been obtained in Eq.(14) and
Le. Ley, Les are other external torques including the control torques. The system
nonlinear equations of motion (16), (17), and (21) are used to obtain the system
linearized equations and to simulate the closed-loop system.

SYSTEM QUASI-LINEARIZED EQUATIONS OF MOTION

In the case of retrieval the time rate of change of the tether length and its rate can
be fast and, therefore, are treated as zero order terms (playing the same role as the
constant terms in the stationkeeping case) in obtaining the system quasi-linearized
equations of motion. The resulting quasi-linearized nondimensional system
equations can be obtained as

kja"+8™+3a+30+k (a'+o - |)IL =)
in-plane {

. . . ’ - 22
kya"+¢"-30Q,0+2k:(a +e’-l),L +ksali = U, @2

kY= b7 dd +(3+k,) ¥+ k, (v _d- \b),i'= 0

out—of—plane{ Qo -(1+Q ) ¢ = Uy, (23)

ke koY= 40, 6 (1-0, )0+ 2ka (Y = 6= 0) T4 kar = Us

where ()'=g:() , T=w.t - Ug,U,, and u, are pitch, yaw, and roll axis control
torques, respectively, and no other external disturbance torques are assumed. The
nondimensional parameters in Eqs. (22) and (23) are:
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H.,
| F—— ';=———-‘-hl,‘ : kz=il+ : k,=—L—-Zl ! (h=-h.>0)
HYX+h I‘ J‘» "’ 'l\x+hl\
L A L e e e P Lt
=— D keE—/— 0 QF o QL FE 0 QS ;
Ke=T3 J, “ J, 1, J,
Jo=Jo v K =l+hlAme b’ o 3 =) 4 i 4m i
It can be seen from the quasi-linearized equations that in the case of retrieval, L < 0.

the in—plane and out-of-plane motions become unstable due to the divergentterms,
such as a'l—’ : 9‘/—’ etc..

3.3 MOMENTUM EXCHANGE FEEDBACK CONTROLFORSYSTEMIN-PLANE
MOTION AT A FIXED TETHER REFERENCE LENGTH

In Ref.[3], Li and Bainum have introduced a new control concept called
momentum exchange feedback control. The same control concept is applied to the
current problem: that is, the time rate of change of that part of the angular momentum
due to the tether deviation motion from the local vertical is used as a part of the
feedback control law for suppressing the tether in-plane swing motion.

Let us first obtain the expression cf the time rate of change of the tether angular
momentum. From Eq.(20), the pitch torque exerted on the tether by the shell is

M, = -h ( S@CYF  -SasYF, —caF,) (24)

After Eq.(24) is linearized about a fixed tether reference length, we obtain
M =-h 1 (a"+8")+my h: ¢"-3h(I,-myh,)0 (25)

Since (a + 0) is the angle of the tether line from the local vertical in the linear sense,
according to Newton's law, the linearized time rate of change of that part of the angular
momentum due to the tether in-plane motion relative to the local vertical is

-h I (a"+9")
Therefore, applying the momentum exchange control concept, the nondimensional
feedback control for the in—-plane motion is introduced as

Up=-20-g,06-Mk,a"+k,0") (26)

The first two terms in EQ.(26) are the linear feedback of the shell pitch angle and its
rate; the last term is the feedback of the linearized time rate of change of the angular
momentum due to the tether in-plane motion relative to the local vertical. for the
purpose of exchanging the tether momentum with the shell and absorbing the tether
swing motion energy by the control system.

The closed-loop system equations of the in-plane motion about a fixed tether
reference length become
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Kia"™+8 +3a+36 =0 -
(27)

Kya ™8 =30, =-gn-£8 Pk, +k,6")
Note that the control goal is to suppress the angle 6 and («x + 6). After substitution of
a=03-6 into EQ.(27), one obtains

k(B +(1-k)e +3B=0 (29)

(1+7) k.p"+(1-k,)o + 2.6 +(£,-30,)p=0
The characteristic equation of (28) is
(O =Tk -k, =k, (l=k VPN +k 87+ [ 301-k )+ (8,-300)k, |\
+32,A+3(8,-3Q,) (29)

The Routh-Hurwitz criteria is applied and leads to following requirements for the
control gains:

g > 30, (30)

£,>0 (31)
k,-k.

<P e (32)

k.(1-k,)
3.4 RETRIEVAL

IN-PLANE MOTION CONTROL

The linear feedback control law (26) is applied to the retrieval where the system
involves complex nonlinear and time-variant ordinary differential equations. However,
it is expected that for a fairly moderate retrieval rate, the closed-loop system
responses will be bounded when the control gain, v. is within some range as indicated
by (32). Numerical simulations are used to select the control gain v which will generate
bounded or convergent system responses. The system simulation parameters are
shown in Table 1.

TABLE t. SYSTEM SIMULATION PARAMETERS

m, m, m, / h a W,

10000 kg | 500 kg | 8.35 kg| ! km [0.08 km| 0.1 km 0.001178rad/s

The decreasing commanded length is taken as the exponential form:

1 =1,6 "¢ la= Lkm (33)

3.9




In general, the range of the control gain 1 for bounded system responses will
depend upon the relrieval rate ¢ . For a particular retrieval rate ¢ =3.45x10 (s ') for
example, it is observed (based on numerical siimulations) that the system is bounded
,when v lies within the interval

kl-kl

| < Vo —L 22
k,(1-k,)

(34)

If the retrieval rate decreases. the interval will become larger with the same upper
bound; or, vice versa, if the retrieval rate increases, the interval will become smaller
with the same upper bound. However (also based on numetical simulations), there is a
maximum retrieval rate c*; if the retrieval rate exceeds ¢*. no control gain v exists for
bounded system responses. For these particular simulation parameters, il is found

that ¢ * is approximately equal to 5 18x1G"(s"') -

ki -k
79 Vypper ——'\—‘—'-_—"(-'-)
Notice that in the case of retrieval the . "\
nondimensional  parameters ki k; are § 7
changing with the instantaneous tether - "
length. Sois the upper bound of the confrol
gain v, shown in Fig. 3. T or 67 o3 or 55 95 07 08 68 1

(km)
Fig.3 Vypper as a Function of Tether Leng*th
Also, the system configuration is more stable with the long tether length at the
initiation phase of retrieval than with the short tether length at the final phase of
retrieval. Therefore, the nondimensional gains, £, andg,  are selectedto be adapted
to the initial and final phase of retrievai for the purpose of saving control energy, thatis,
&= g, £=g, Ol km </ =21 km

(35)
g,=g, £,=8,y 0.0 km </ < 0.1 km

OUT-OF-PLANE MOTION CONTROL

The system out-of-plane motion is coupled with the in plane motion and tether
longitudinal translational motion, especially in the case of large swing angles and
quick retrieval. Therefore, it is necessary to control the systerm out - of-plane motion
during fast retrieval. To this end, it is proposed to control the shell yaw and pitch motion
by linear feedback control law, that i

U,=8 + 8.0+ B+ 8 P
v St Epy l " (36)

U(h_: gz;\ll +g2?\l]‘+ gz:(t»‘*— !.'.“(b’

The selection of the control gains £ is based on the shell linearized equations of
motion without the tethered subsatellite system connected. The LQR or other methods
can be used to design the control gains.
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3.5 NUMERICAL RESULTS

First of all. it is shown that with the retrieval rate e~ Ct. ¢ =3.45x161(8”') (Fig.4)
and without any controls, the system responses diverge very quickly (Fig.5).

Fig.6 shows that with the addition of the three-axis attitude control on the shell
(which, however, does not involve the momentum exchange feedback term), the shell
attitude motions are subjected to a stable control, whereas the tether in-plane swing
motion stil! diverges.

With the inclusion of the momentum exchange feedback term in the pitch control
law, the pitch control law is then selected as:

Up=-86-2.0-9k,a"+k,6")

k -k ,
v X2 g :
k.(1-k,) a>0
g=24  £=23 . 0.0 km <1< [ km
g,=54 g,=34 ; 0.0l km<! <0.1km

Figs.7-9 show the system responses corresponding to the three cases: a=6, a=4,
and a=1. It can be seen that with the increase of the control gain v (a decreases) the
tether in—plane motion is better damped, however, the transient response of the pitch
motion of the shell is subjected to a larger initial overshoot, but subsequently damps
rapidly. This conclusion agrees with the physical explanation of the momentum
exchange feedback control and the same results were observed in Ref.[3]. Therefore,
the selection of the contiol gain v is a kind of trade-off and the better system
responses are usually achieved with the control gain v close to the upper bound of the
stability region.

Fig.10 shows the response of the tether out-of-plane swing motion. The tether
out-of-plane motion will be disturbed by its coupling with the system in-plane
motions and tether longitudinal translation. However, it can be seen that when the
system in—-plane motions are damped, the tether out-of-plane motion (not directly
controlied) will not become too large, with a maximum swing angle of 20 degrees at
the end of retrieval (for the selected control gains here).

Fig.11 shows the projection of the tether trajectory in the orbit plane.

Fig. 12 shows the tether tension profile during retrieval. It can be seen that the
change of tether tension is moderate and no slack tether occurs. This is one of the
advantages of the current control method over tension control.

Fig.13 shows the requirement of the pitch control torque during retrieval for the
selective control gains. The torque requirement is reasonable.

Although the control gain v is selected in an adaptive manner, the fluctuation with
the tether length is very small (Fig.2). it will be very interesting and of great practical
value if a constant control gain v can be applied with successful resuits. Fig. 14 shows
some typical system responses when a constant gain v is used.

3.11




3.6 CONCLUSION

The retrieval dynamics of the orbiting tethered antenna/reflector system without
active control is unstable. In the present paper, the control concept called momertum
exchange and compensation has been applied to the retrieval of the tethered
antenna/reflector system. The time rate of change of that part of the angular
momentum due to the tether motion from the local vertical is used as a part of the
feedback law in the antenna attitude control system. The tether retrieval commanded
length is taken as a exponential form. The selection of the nondimensional control
gains is based both on the consideration of the stability of the system linearized
equations about a fixed reference length and on the numerical simulation for the real
time-variant and nonlinear system. The numerical simulation results have shown the
effectiveness of the current control method for the suppression of both the antenna
and tether in—plane motions at relatively quick retrieval rates.

Another implication of this approach to tethered systems is that tether swing
librations can be suppressed through the control of the motion of an attachment point
or boom using this new methodology. This control concept provides an alternative
technique for control of future possible tethered systems which may have some
practical advantages such as: (1)avoiding excitation of the longitudinal vibrations and
wave propagation of tethers induced by tension control and, (2)avoiding slack tethers.
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APPENDIX A
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g,= -sinacosy @, +sin YW, +cosa cosy (o)i. + w:, ) +siny W, W, + sinacosYw w,
+ 0 cosce cosY (3 cosd coszeﬁl) + 3w sinysin b cosd cosa
—3w§sin cosY cosd Sinocosy

g,= sinasin wh_\, + cosyw, —cosasiny ( (oi, + w:, ) + cosyw, w, ~sinQsinYw, w,
_m:j cosasinY(3 cosb cosze— 1)+ 3wf cosY sin ® cosd cos:e
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4. THE OPTIMAL LQG DIGITAL CONTROL OF AN

ORBITING TETHERED ANTENNA/REFLECTOR sysTEM!

The analysis and design of LQG optimal digital
controllers and estimators are presented for an
orbiting tethered shell system. Both the shell and
tether are considered to be flexible. In this paper
the emphasis is placed on: the mathematical models of
the dynamics; the influence of the number of actuators
and their locations; the methods of measurement of the
state variables and design of LQG optimal digital
controllers and observers.

Attitude and shape control is assumed to result from
point actuators and tether tension. A symmetric design
for the actuator locations is found by means of the
concept of the degree of controllability and related
simulations. To design a closed-loop control system,
measurement is an important problem. If the tether
transverse motion (swing and transverse vibration) is
not directly measured, the system is not observable.
One of the main contributions of this paper is a new
practical method to measure the tether transverse
motion. With the measurement of the tether traneverse
motion and several other properly placea sensors, the
system will be completely observable.

The analysis and design of the optimal LQG digital
control system for the tethered shell has been
certified by simulation. For a system with joint
bodies (a flexible shell and a flexible tether) the
order of the system is very high. After maximizing the
degrees of controllability and observability the best
combination of the controller and observer pcle
locations is found by carefully selecting the
wheighting matrices. Typical figures show transient
responses under LQG synthesized control laws.




4.

1

INTRODUCTION

Since the early 1970's _—=————7 —_ 3= ::—ﬁ=,:;L
very large space antennas have ‘
been proposed for power
transmission, astronomical
research and communications.
The gravity stabilized
configuration is particularly
suited for 1large flexible
systems to alleviate the
problems associated with the
active control of large \
structures. A tethered shell
structure (Fig.1l) to provide
the favorable moment of

rigid boom

tether mechani.m

tether (m:)

inertia distribution for

overall gravitational

stabilization has been

investigated by Liu and subsatellite
Bainuml . In their paper for a FIG. 1. Tethered Antenna/Reflector System.

rigid shell and a flexible

tether, the control problem, by using the continuous-time
linear quadratic regulator (LQR) technique, has been solved.
Because of the huge size and small mass, it is necessary for
the future analysis to consider the shell to be flexible. The
vibrations of the shell affect the tether motion and tension,
and are coupled to the rotations of the shell. To control the
shape and attitude of the shell and the tether, tether tension
alone is not enough; therefore, it is suggested to add a few
point actuators. The number and location of the actuators are
determined by means of the concept of the degree of
controllability. The state measurement is another important
problem. In this paper it is shown that the system will be
unobservable if the tether out-of-(orkit)plane swing motion or
transverse vibration is not directly measured. A method to
measure the tether transverse vibration and swing motion is
developed in this paper; this method may be implemented in
engineering practice, and can provide a high measurement
accuracy. It can be used for any orbiting tethered system.
With this method and a few properly placed sensors, it is
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4.2

found that the system will have a satisfactory degree of
observability.

In engineering practice a discrete time data system is
more practical for the controller based on the on-board
computer. Thus the technique of LQG (design of the optimal
stochastic controller for a problem described in terms of
linear system models, quadratic cost criteria, and Gaussian
noise models) is employed to synthesize a controller with a
Kalman filter to deal with the measurement noise and plant
noise in the presence of sampled data observations.

MATHEMATICAL MODEL

Dynamical Equations

The mathematical model of a tethered shell system in orbit
was developed in Ref. 1. The resulting linearized equations of
motion were developed as:

1) shell attitude:

V/-Q5- (14Q%) ¢/= (Lt Loy /T 0% (1)
8/-3Q%8-2X1{Pa€p,/J,- (h/Jy) (EI; Co+2m;, (L'-up,)
n n

+25Ty Ap-Iza") = (Lg,+L,,) /Jy0% (2)
)

¢+4Q%0 (1-Q%) W-h [ (Y/+y) I3+EI5 (B +B) 1/

3
=~ (Lgy+L,,) / J: % (3)

2) tether longitude and swing motions:

@i mg (L"-u) +3u, ) +LIy (An-3A,) -2LI, Cp+ (2a/+26/

o m m 4

-3) Ic-hm; (3-20/) ) =F + (mE . -mE,) /my (4)

H!+ (8430 +308) (Hey+hIy) -LHey Co-3X (Hyy +hI; ) C,
o m

. . 5
—21,(L’-u;°)-2§H"_A;=L,y/w’c (3)

Hyx (Y'+Y) = (Hex+ hI;) (§/+40-37) +ZHyy (Bo+B,)

. . , (6)
+3 Y (Hey,+hlIy) By=1L,, / 0%
-]

3) tether and shell vibrations:
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Iy (L"-up +3u,) +LH, v (An-3A,) -2LH, 4.Ca+ (20 + 20/
=3) Hyy + Iy h(20/-3) + XK, A, =HD
m

(7n)

LHy 0.Ca+214,(L'-u3) +25H, o Au-Hy (a/+6/+30+30)  (gn)
..hI;n (6/+3a+30) +H0.0nwilcn=He(:)

§H.,..(BL’+B,,,) +(Y/+ay-¢/-40) Hy - I, (¢/+40-3Y)h  (9p)
*Hy o w? B, = H,‘;,')

e+ (Q3-3)e, +2I/"¢//Ma= (31" +F, $ 3+E,/ %) /M,a (10n)

¥, 0, ¢: yaw, pitch & roll angles of the shell, respectively;
Txr Jyr Tyt inertial moments of the shell about the principal
axes x, y and z, respectively;

Q=(T2-Ty) [Ty QY=(Tx-T3) /T, Q3=(Ty-Tx) /I,

Jy=Jp+mg,h?+Ih Jo=J z+my.h%+Ih

m,, My, My: masses of the shell, tether and subsatellite,
respectively;

-
Mg=Mp+Mge i Mge=Mg+My; Mge=Mge-Mp/My; I(.)=Ist(-)dm

x =
Ioy=mpl(.)/mgi ”(-)(~)=Ist(')(*)dm' Hiyoy=mpH () () /Mg

¥, = sin(B /L), ¢ =sin(nmx/L) the m*® modal shape functions

of the tether longitudinal and transverse vibrations,
respectively;

Lepx+ Legpyr Lgpz: the components of torque, produced by E,. and

Ep, which appear in the tether force acting on the shell;

e: the external force
Ey=[ edm; E,=[edm; E<E,+E,; : :
st P acting per unit mass

L L

epz® the components of torque contributed by the
external force acting on the shell;
h: the length of the boom;

epx’ Lepy ’
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€pn=Apn/a;
A,n:  the n*P modal amplitude of the shell;
a: the base radius of the shell;
0 the orbital angular velocity;
M_: the n®*P modal mass;

{=r/a;
r: radial distance of a shell element from the symmetry axis;

(n) Xpt coordinate of differential area on the
Izl x &, dm;
1 pP Pn

surface above the base plane of the shell

. 4
¥, =Ay;[aP 8¢p &P/ (RDA;) +T 5 (A pi8) +Dp I, (A5 5€) JcOSP (B +8,)
the nth" modal shape function of shell vibration?

R: the radius of the shell curvature;
P, 3¢ numbers of the nodal diameters (meridians) and nodal
circles, respectively;
Jp(.), Ip(.): Bessel function and modified Bessel function,
respectively, of the first kind and order p;
D= E, h,/12(1-v?),
bending stiffness;

v: Poisson's ratio;
Eg: Young's modulus of the shell;
hp: wall thickness of the shell;

“n=“pn/“cv
Wpn: shell frequency of the ntP mode,
E,: generic force on the n*M mode;
Fox? component of the tether force acting on the shell along
the shell symmetry axis;
Qp°: shape function on the shell apex;
A,, B, & C,: the amplitudes of the longitudinal, in-plane and
out-of-plane components of the m*" mode of the tether;
Upo ¢ the displacement of shell apex;
w,: the nt? mode natural frequency of tether transverse
vibration,
0 2=n?n2(1+3m /m, ) -3/4;
F..: tether tension,
Ley & Lg,: the torques produced by the external force;
a, y: tether in-plane and out-of-plane swing angles,
respectively;
Hex:, Hgy & Hg, result from the external force
L : tether length;

3

.
[}
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o, m=n

K= .
mn EABi(l+m,sxn23m/mt)/2L m=n

E : Young's modulus of the tether;
A : the area of tether cross section;
()'=d( )/dT, T=o.t;

It is noted that only the
modes without nodal diameters
(p=0) are coupled to the
rotation, so the first four of
them (j=1, 2, 3 and 4) are
considered. For the modes with
one nodal diameter (p=1) whose
amplitudes are quite large
during the attitude adjusting,
the first three of them (j=1, 2
and 3) are included. For the
modes without nodal circles

(j=0), the influence of the W/ 1%V ----- nodal lines
shell curvature remains - 3 = number of nodal circles
insignificant. Since the 7092 P = number of nodal meridians
frequencies for these modes are Pig.2 Several Modal Shapes of
very nearly equal to the a Shell

corresponding flat-plate )

frequencies, the frequencies are very low. The mode with two
nodal diameters is taken as an example. For tether transverse
vibration, six modes are taken, three for in-plane, three for
out-of-plane. The following proposed numerical values of a
tethered shell system are adopted here:

a (shell base radius)=100 m. m, (shell mass)=10000 kg.
R (shell curvature radius)=5 km. H (shell height)=1 m.

v (shell Poisson's ratio)=1/3 hp (shell thickness)=1 cm.
Ep (shell Young's modulus)=8.4047*109 N/m2

m, (subsatellite mass)=500 kg. m, (tether mass)=8.35 kg.

L. (commanded tether length)=1 km. h (boom length)=80 m.

AE (tether axial stiffness)= 61645 N.
The deformations of several modes are shown in Fig.2, and the
results of calculations for a few generic modes is shown in
Table 1.
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(1, 2)
(1, 3)

1
2
3
4
5 (1, 1)
6
7
8 (2, 0)

3.012 1.02778
6.206 1.02946
9.371 1.03692
12.53 1.05696
4.530 1.02821
7.737 1.03198
10.91 1.04459
2.292 0.00867

4.9627
5.8752
3.6597

0 -.08381 2875.55

o 3.119e-3 -322.84

0 -1.28e-4 93.44

0 5.368e-6 -38.73

0 -.01901 0

0 7.045e~4 0

0 -~2.845e-5 0
-3.47e-6 0.2240 0

Table 1. The Results of Calculations for a Few Generic Modes of the Shell

Actuato acemen

d

To control the shape and attitude of the shell and the
tether, tether tension alone is not sufficient, so that a few

Case Number

of Act.
1 6
2 6
3 6
4 12
5 12
6 12
7 12
8 8

Locations of

Actuators Controllability

Degree of

1.457+10""
0.0
0.0
5.893+10°"
5.443%10°7
5.443+10°°

4.987+10°°

Table 2. The Degree of Controllability for a

Few Actuator Designs

point actuators are
added. The concept of
the degree of control-
lability has been used
for determining the
placement of the actu-
ators on the shell¥.
The degree of control-
lability is the scalar
measure of system con-
trollability and its
reciprocal indicates
the effort to control
the system. The values
of the degree of con-
trollability for some
actuator placement
designs are listed in
Table 2. It is assumed
that the thrusters at
the shell's edge have
two jet directions:

i) tangent to the edge;
ii) normal to the shell
surface. Each of the
other thrusters has




only one jet direction, i.e. normal to the shell surface. In
case 8 only eight actuators are used, and the degree of
controllability is satisfactory, so this actuator location
design is recommended.

For an actuator which can generate a force f;,=(f, fy fz)'r

and is placed at a location r;=(x; y; z;)T the control torque
is given by r; x £;, so in egs. (1)-(3)

(Lapx Lepy Lepz)® =IFy X £ (11) T

1

1
(Lgpx Lepy L!pz)T=(° CaEp: chpy)T (12) '

{
where C4 is the distance between the mass : boom
centers of the shell and the tethered i

A
|

shell system. In the remaining equations

~_)
'
L
N
.

L, ~-I E, / my (13)
L= I,,E, /[ m (14) /
o double
n - -
Hed ==Iy Ep/my (15) innes
A,-A,
H.‘;,”a-I..Ep,/m, (16) b‘earings &
angular tether
Hﬁ:)='1},ﬁ§x/”h (17) transducers
a,,sjf:1 &, (v 2) £y (18)
(each jet is along the shell’s x axis)
Sensors and Observatjonal Model
The system will be unobservable if
tether transverse motion (swing and
vibration) is not measured. A new method subsatellite
to measure the motion is shown in Fig.3a.
Fig.3a. A Design for
The accuracy of angular transducer can be Measurement of
very high (e.g. the ones used on inertial Transverse Motion

f the Teth
platforms) during station keeping (i.e. ° ¢ e

the error angle is very small). The

subsatellite is quite heavy, so that an inner framed structure
is adopted. Since the tether can bear only the longitudinal
tension, the position of the frame should coincide with the
tangent direction of the tether at the attachment point
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(Fig.3b) . The displacement of the tether in-plane vibration is
approximated by

> C,(t) sin(nnx/L) then

ns=1

al-tana,=dW/dx|x.°=n§Cn(t:) (nn/L)cos (nnx/L) lx.o=n};C,,(t:) (nm/L)

The angular transducer A, is assumed to measure the in-plane
displacement between the shell reference axis and the tether
line

y,=K, (a+a,) =x,[a+>51c,,(c) (nm/L)]  (19)
ne

Similarly for out-of-plane case, the
value obtained from transducer A, is

yz=l4;[v+):'313,,(t)(nn/[,)] (20)

A dial with magnetic encoder is
assumed to be used to measure tether
length and its changing rate. The dial
is fixed to the reel from which the
tether is retrieved or deployed. When
the dial turns it produce a series of
impulses. The sum of the impulse number
represents tether length, and the

reciprocal of impulse interval
represents the rate of tether change. “2,’3,?; e P ene®
Deformed Tether and
}’3=K¢€ (21) Y‘=K.£I (22) the Shell Reference

where €=(L-L.) /L,
L. is the commanded length of the tether.

The shell attitude is assumed to be measured by an
inertial platform based on gyroscopes. The advantage of the
inertial platform is that it produces signals, for both the
attitude and angular velocities, with a high signal:noise
ratio. The drift of the inertial devices is then modified by
two infra-red horizon sensors of the Earth and two sun

sensors®. The reason why an inertial platform is used is that
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the infra-red and sun sensors give signals with low ratios of
signal to noise, and in the dark part of the orbit the sun
sensor can not give any signal at all. So the measurement
equations for the shell attitude are:

Vs=Ke 0 (23) V=K ¥ (24) y;=K, & (25)
Vo=Ky®  (26) Ys=Ky¥  (27) Yie=Kyd  (28)

It is assumed that four displacement sensors, which are
collocated with the actuators in the first and second

quadrants, are used to measure the shell vibration:

yi=xia15:"21o},j’ (8, {)e,,(e) (i=11,12,13,14) (29)

Egs. (19)-(29) consist of the measurement equations, for
which the system is completely observable.

The State Bquations and LQG Requlators and Observers
After substituting Egs. (11)-(15n) into Egs. (1)-(10n),

and after some algebraic manipulations, the system equations
can be written in the state vector form:

x'=Ax+Bu (30)
where u=(f,,f£,,..... £4,Af) T
xs(elalelepllepzl ----- Iep'lc10c20c31*1¢IYIb11b2Ib31
o, o, ¢, €., ..... e, cl.cac, ¥, &, ¥, b, by, by T

c;=C;/L. b=B,/L, Af=F,/(w’ms.L)+3[(my+m./2)/my+h/L]

In fact, dynamic systems are driven not only by their own
control input, but also by disturbances which we can neither
control nor model deterministically. Sensors generally do not
provide exact readings of desired quantities, but introduce
their own system dynamics and distortions as well. Furthermore
these devices are also noise corrupted. In order to solve
these difficulties, the LQG techniques (design of the optimal
stochastic controller for a problem described in terms of
linear system models, quadratic cost criteria, and Gaussian
noise models) are effective. In this section the LQG theory is
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applied to the design of suboptimal regulators and estimators
for the tethered shell system.

For the infinite-time optimal regulator, given the system
represented by Egs.(30), the task is to find the optimal
control such that the performance index

=L [T(xT T
zj;(x Ox+u TR u) dt (31)

is minimized. In Eq.(31) Q. is a symmetric positive
semidefinite matrix; R, is a symmetric positive definite
matrix. After discretization and consideration of noise.

Eq. (30) becomes®
x(k+1) =A(T) x(k) +B(T) u(k) +w(k) (32)
y (k) =Cx (k) + v (k) (33)
where A(T)=eAT B(T) =f TeAT B 4t

and Eq.(33) is the state vector form of Egs.(19)-(28).
w(k) and v(k) are the n-dimension and m-dimensional white
Gaussian discrete time noise with

Elw(i) wT(j)1=08 E[lv(i) vT(j)]=R8

respectively, and assumed to be independent of each other and
the initial conditions. The initial condition x(0) is modelled
as a Gaussian random vector with mean, x, and covariance, P,.

From Eq.(31), the discretized performance index is

J=% ¥ [x T(k) Ox (k) +2x T(k) Bu (k) +u T(k) Bu (k) ] (34)

ke0

whe.reo"-f"e“rt Q. e?t dt W=fre"° Q. glt,0) dt
o -]

R'-f’[R.,+g’(c,0)ocg<c,0)dc g(c,o)=f ‘e B ds
o o

The problem now is to find the control u(k), so that the
performance index in Eq.(34) is minimized. If the system
represented by Eq.(32) is controllable (or stabilizable) and
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observable (detectable), the LQG solution is’‘8
ulk) = -G (k) (33)
G=(R+BTPBY Y (BTPA+W ") (34)

where P satisfies the algebraic Ricatti equation
P=ATPA+(0- (ATPB+W) (R+BTPB) "1 (BTPA+WT) (35)

The state estimate at the k! interval can be related to its
predicted value based on information from the (k-1)%% interval;
together with the measurement vector at the k*P interval, as

R(k)=R(k/k-1) +K[y (k) -Cx(k/k-1)] (36)
where R(k/k-1)=A R(k-1)+ B u(k-1) (37)
K=pP,CcT(CpP,CcT+R)? (38)

The covariance of the state estimate, P,, satisfies the
algebraic Ricatti equation

P,= (A-K"C) P,(A-K"C) TsK*RK*T+Q  ( where K*=Ax)  (39)

Due to computational delay, what is often considered for
implementation is not the control law given by Eq.(33), but a
suboptimal control

u(k) = -G (k/k-1) where(w)
2(k+1/k)=AR(k/k-1) +Bu (k) +K*[y(k)-CR®(k/k-1) ]
It is wise to seek the possibility of a separate determination

of the state estimate and the controller. The error of the
predicted estimate of the state is defined as

AX(k/k-1) =x (k) -R(k/k-1) (41)

the x(k+1) and Ax(k+1/k) may be combined into a simple system
described by the state equations?®

A-Bc¢ BG
0 A-K‘c

w(k)
v(k)

= (42)

[ x(k+1)
Ax (k+1) /k)

x (k) ] +[I 0
Ax(k/k-1) I -K*®

From Eq.(42), the LQG suboptimal control dynamics consist of
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two parts: the dynamics of the plant with a feedback
controller and the dynamics of the estimator feedback loop.
The matrices describing the dynamics of the closed loop
controller and the closed loop estimator are

A =A-BG (43) and A_=A-K°C (44)

respectively. The eigenvalues of A_" and A," are independent of
each other. In the synthesis it is, therefore, possible to ar-
range the poles of the estimators and controllers separately.

It is well known that if and only if the open loop system
model is both stabilizable with respect to u(k) and detectable
with respect to y(k), there do exist gains G and K' that can
provide asymptotic closed loop stability. Furthermore, under
the stronger assumptions of complete controllability and
complete observability (as in the designs of the actuators and
measurements for the tethered shell system, here), we can
place both the regulator and observer poles arbitrarily
(within the restriction of the complex conjugate pairs).

It should be noted that in Eq.(30) the differentials are
respect to the orbit time, i.e.

X, '=dx; /do t=(1/0.)dx;/dt

If the noise added to dx;/dt is w;, the noise added to X;'
should be (1/w.)w;. So the covariance matrixes should bel®

I, 0 I, 0
R=p,

(45)
0 (1/0}) I, 0 (1/w?) I,

O=p,

For the control loop let the weighting matrices
Q.=cT ¢ Ro=p I

In order to find the appropriate arrangement of the observer
and controller poles it is necessary to study the loci of the
eigenvalues of A, * and A, * with Bqr kg and pu., respectlvely The
maximum and minlmum moduli of the eigenvalues of A, and A’
vs. the different parameters ug,, ug and p, are llsted in Table




4.

3

3 and 4, respectively.
Based on these data in Tables 3 and 4 we can arrange the
position of the controller and

observer poles. Table 3. Max. & Min. quulj.
of Eigenv_%lues of A, vs.
Hq (#g'lo )
SIMULATIONS

It is assumed that the Hq min. max.
accuracy of the displacement 10°1'  6.3514e-4 0.96714
sensors is about 1 cm. for the 1072 1.6817e-2 0.97003
shell deflection, the angular ig-m 8:;;2;? 8:3;;;3
sensor accuracy is about 1074
rad., and the modelling error for
the dynamical system is less than
the error of the measurement Table 4. Max. & Min. Moduli
sensors. In Eq.(45) the parameters °f Eigenvalues of A, vs. 4
of the covariance matrices used for mEEEESESTEEEEEET——————

simulation are ug =107% and ug,=10"1¢

) Hg min. max.

It is also assumed that both the 3
. 1077 0.88481 0.99948
measurement and the plant n?lses are 10°* 0.83930 0.99943
Gaussian white noises with zero 10°% 0.73230 0.99850
1007 0.57579 0.99701

mean.

In general, as for the design of
the Kalman filter, the considered covariances of the measure-
ment and plant noises should be greater than or equal to the
actual ones. After these conditions have been satisfied the
location of the observer poles may be changed by means of the
variation of the parameters up and ug. When ug=10"%, u,=10716
the minimum and maximum moduli of the eigenvalues of Ae'
(observer) are 0.55691 and 0.98687.

As we know the minimum and maximum moduli of the observer
closed-loop eigenvalues should be less than those of the
controller closed-loop eigenvalues, so that the estimator can
provide accurate timely state information for the controller.
Based on this principle, the possible appropriate minimum and
maximum controller eigenvalues are 0.57579 and 0.99701.

The initial state is also assumed to be noise-corrupted

X(0)=x_+w, x_=E{x(0)} P,=E{w, w. T}




The initial conditions are assumed as:

x,(0)=0(0)=0.1 rad. x,(0)=a(0)=0.1 rad x,(0)=e(0)=0.001
x,(0) =e(0)=0.001 x,,(0)=c,(0)=0.001 x,,(0)=y(0)=0.1 rad.
X,6(0) =9 (0)=0.1 rad. x,,(0)=y(0)=0.1 rad. x,,(0)=b,(0)=0.001

and the rest of the initial conditions are taken to be zero.
The initvial values of the estimated state are assumed to be
zero, i.e.,

X;(0/=1)=0.0 (i=1, 2, ...... , 40)

The strateqgy of choosing the sampling time, T, should be
to select the sampling time as long as possible after the
performance of the sampled-data system meets the requirements
of the design. Generally speaking, too 1long a sampling
interval tends to deteriorate the performance of a sampled
data system (increase the sensitivity, decrease stability,
loss of controllability etc.)® on the other hand, the
implementation of a very short sampling interval may be
limited by computer operation times and the expense of fast
A/D and D/A devices. The choice of the sampling time, T, will
also be constrained by the capability to restore the signal
which comes from observational data, i.e. T meets Shannon's
theorem, t<n/w,, where «, is the maximum frequency of the input
signal. In the simulation here T=5 sec.

The result of the simulations are shown in Figs.4-6. Fig.4
is for the in-plane motion, Fig.5 for the out-of-plane motion,
and Fig.6 for each actuator force needed during the regulating
process. Since the tether can not support compressive forces
and a large tension force should be avoided, the tether
tension boundary is set: 0<F,,< 5 newton (Fig.4 c). The result
of the simulation is satisfactory. The initial errors are
converging smoothly, the required forces for each actuator are
reasonable. After 5 minutes we can hardly see any difference
between the actual value of each state variable and its
estimate.
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4.4 CONCLUSIONS

1) The actuator placement design used here is satisfactory.
The degree of controllability is quite high considering
only eight point actuators are applied. This design can
control elastic vibrations and orientations of a flexible
shell and a flexible tether, and it has been verified by
simulations.

2) The system is not observable if the tether transverse
motions are not directly measured. A new method of
measuring tether transverse motion presented here can be
applied not only to tethered shell systems, but also to any
system with a tether. This design is easy to implement in
engineering practice and of high accuracy of measurement.

3) The discrete time data system is more practical for a
controller based on an on-board computer system. The
sampling time, T=5 sec. is a good compromise between the
performance of the system and the capacity of the on-board
computer.

4) For a dynamic system with plant and measurement noises, the
LQG technique is effective. As for the placement of the
controller and observer poles, the minimum and the maximum
moduli of the eigenvalues of the closed-loop observer must
be less than the minimum and maximum moduli of the
eigenvalues of the closed-loop controller, respectively, so
that the observer can provide the timely and accurate
estimate of the state variables for the controller. We
should also ensure that the ratio up/ug can not be too
small, otherwise the Kalman filter may become too sensitive
to the observational noise.

5) Since the tethered shell system consists of a flexible
shell and flexible tether, the dimensionality of the state
vector is as high as 40. Because of the practical pos-
sibility of on-board computational implementation, it is
suggested for further work to design low-order controllers
based on robustness theory.
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S. EFFECTS OF SOLAR RADIATION PRESSURE ON THE TETHERED
ANTENNA /REFLECTOR SUBSATELLITE SYSTEM

5.1 Introduction

Since the initial proposal of the tethered subsatellite systen,
the dynamics and control of the tethered subsatellite systems have
been investigated by a host of investigators. A comprehensive
survey article was given by Misra and Modi [1) recently. Sources of
applications of tethers in space have been proposed for different
purposes. For example, a number of very large space antenna and
reflector types of orbiting structures have been proposed for power
transmission, astronautical research and communications.

A tether tension control law based on the tether 1length and
length rate for in-plane control was formulated by Rupp (2! and
represented a pioneering effort in establishing the feasibility of
control by using tether tension control modulation. Recently,
Bainum and Liu (3] developed a system mathematical model of a class
of large antenna and reflector orbiting structures which has an
articulated tether connected supporting mechanism to provide the
favorable moment of inertia distribution for over-all gravitational
stabilization and controllable tether tension used for producing
restoring torques on the shallow shell reflector. The optimal
control law for tether tension control has been suggested and
evaluated. The numerical results show that the in-plane motion of
the tether could be asymptotically stable with Rupp's tension law;
and the transient response can be improved significantly by
carefully selecting optimal control gains with suitable state
penalty and control penalty matrices.

As the different control laws are being developed, a question
arises that if some environmental disturbances are considered, will
the tension control laws still be suitable for maintaining the
required pointing accuracy of the antenna/reflector subsatellite
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system ?

It is known that the solar radiation pressure is one of the
dominant environmental disturbances, especially in higher orbits.
An overview about the environmental torques was given by
Shrivastava and Modi. (4] The tension control is based on utilizing
the gravity-gradient and centrifugal forces; therefore, the
capability of the tension control will be decreased as the altitude
level 1is increased. On the other hand, the solar radiation
disturbance will be augmented because of less oxygen, nitrogen and
ozone at the higher altitude.

In general, the disturbance forces and torques induced by solar
radiation pressure vary with the illuminated area, the
characteristics of the illuminated surface of the orbiting
structure, and the offset of the center of solar radiation pressure
from the center of mass of the system. The general formulations for
evaluating the solar radiation pressure forces and torques are
as follows: (5]

5=-wfs(ﬁ-6)8ds (5.1)
&=—2wfs(n‘-6)2ﬁds (5.2)
EF=(1-e) F,+eF, (5.3)
_Ig‘=-wfs (A8) IxBds (5.4)
&=-2wfs(ﬁ'8)’;xﬁds (5.5)
N=(1-€)N,+eN, (5.6)




where F,: resultant solar radiation pressure force on a

completely absorbing surface

F¢: resultant solar radiation pressure force on a
completely reflecting surface

F: resultant solar radiation pressure force on a
general surface with arbitrary reflectivity

N,: resultant solar radiation pressure torque on a
completely absorbing surface

N¢: resultant solar radiation pressure torque on a
completely reflecting surface

N: resultant solar radiation pressure torque on a
general surface with arbitrary reflectivity

€: reflection coefficient i.e. the ratio of the energy
density of the reflected light flux to the energy
density of the incident light flux

s: illuminated part of the surface

But there is a major difficulty in determining the boundary of
the illuminated area on the surface of the orbiting structure. The
illuminated area is affected by the position of the orbiting
structure in the orbit, the attitude and the shape of the
structure. Sometimes it is extremely difficult to obtain an exact
analytical formulation for the solar radiation disturbance. Bainum
and Krishna (%) used a numerical method to approximate the force and
moment induced by the solar radiation pressure on an orbiting
flexible beam and plate, because of the complicated vibrational
modes and the time varying shadow attributed to each of those
modes.

One of the objectives of the study is to develop the analytical
formulations for the modelling of the solar radiation disturbance
on a class of large tethered antenna/reflector types of orbiting
structures. The other 1is to evaluate the effects of these
disturbances in the case of station-keeping and to determine at
which altitude level the tension control law is still able to
maintain tb» satisfactory pointing accuracy of the tethered
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antenna/reflector subsatellite system by numerical simulation.
$.2 Modelling of the Solar Radiation Disturbance Torques

The system ciscussed here is composed of a spherical shallow
shell reflector, a boom attached at the apex of the shell
reflector, an articulated tether connected at the end of the boom
and a spherical subsatellite. (Fig. 5.1) For mathematical modelling
of the solar radiation disturbance, the following assumptions are
made:

1) The shell reflector, boom and the subsatellite are assumed to
be rigid bodies, and the tether is compressible but considered
as a straight line (neglecting the transverse deformation)
during the swing motion. The surfaces of these bodies are
characterized by isotropical reflectivity properties.

2) The spherical shallow shell is totally illuminated either on
the inner shell surface or outer shell surface, since the
ratio of the height of the shell to the radius of the base of
the shell is far less than unity.

3) Local shadowing on the tether and the boom is considered.
There are two phenomena; one is that some sections of the
tether or the boom will not be illuminated in certain
positions of the orbit due to the shadowing of the reflector;
the other is that the boom or the tether is considered as a
cylindrical column; therefore, at any instant of time the
tether or the boom can only be illuminated on one side when
the emission of the sun light and the reflected sun light from
the Earth or other space objects are neglected. In addition,
the shadow of the Earth on the orbit has been taken into
account during the numerical simulation.

4) The solar incidence vector in the orbital coordinate reference
system is ticated as a time varying parameter. It varies with
the inclination of the orbit and the position of the space
structure in the orbit. A circular and equatorial orbit is
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assumed in the numerical simulation without losing
generality.

The coordinate systems used in the development of the system
equations of motion are shown in Fig. 5.2; 0X,Y,2, is an orbital
reference system centered at the center of mass of the shell
reflector with 0¥, along the local vertical, OY, along the normal
to the orbit plane and 0Z, along the orbital tangent velocity
direction. O0X_.Y,.Z. is a shell body reference frame, the axes 0X,,
OY, and 02, are principal axes of the shell reflector. O.X.Y.Z, is
the tether reference frame with O.X, along the undeformed tether,
where O, is the point from which the tether is deployed or
retrieved. The coordinates of O, in the shell reference are
(h,,0,0).

The yaw, pitch and roll angles of the shell are denoted by ¥, 0
and ¢, respectively. An Euler angle rotation sequence is assumed
as: (1)¥, (2)0 and (3)¢. Therefore the transformation from OX_Y, 2,
to 0X,.Y.Z. is assumed to be given by:

Xf XO
Yz = Qt Yo (5'7)
Zt ZO

where

cpc® spcy+cdsbsy sdpsy-chpsdcy
Q, = |-sdc® cdcy-spsOsy cdsy+spsdcy (5.8)
s -cOsy cBcy

The in-plane swing angle of the tether, a, depicts the angle
between the projection of the non-deformed tether in the orbit
plane and the OX, axis; and the out-of-plane swing angle of the
tether, vy, indicates the angle between the projection of the
undeformed tether in the OX,Y,  plane and the OX, axis. The
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transformation from O.X.Y.Z, to OX,Y.Z_ can be derived by:

o X, X, h,
Y |=0Y]+|o0 (5.9)
z, z.| |o
g where
-cYyca sy sacy
Q. =| Syca cy -sasy (5.10)
-sa 0 -ca
o
The unit solar incidence vector can be formed in the orbital
reference system:

. ao = [aol bol co]T (5'11)
where a,, b, and c, are components along the 0X,, 0Y, and 0Z, axes,
respectively. Furthermore, the unit solar incidence vector can be

® transformed into the shell reference systemn:

at ao

® ar = bt = QI bo (5.12)

ct co

® here a,, b, and c, represent the components along the 0X,., OY, and
02, axes, respectively. Similarly, the unit solar incidence vector
in the tether reference system can be written as:

. at at

CC Ct

® 5.6




a,, b, and c, are the components of the unit solar incidence
vector along O.X,., 0.Y, and O.Z. axes, respectively.

The djisturbance torgue induced by the solar radiation pressure on
the antenna/reflector can be expressed:

1) for completely absorbing shell surface

N, o 0
N, = |Neay| = R, | 2| . (5.14)
N raz - bt‘

Nzt‘x 0
Nye = Negy| = Re | | (5.15)
N -b

N, = [Ny| =(1-€) N +eN,, (5.16)

where

. r
R,=-mwR3c,sin?f, (l—cosﬂo—Tf’)

r
R,=-1:wR3c,sin‘Bo(1-T°)




Wi solar constant

Bp: cone angle of the spherical shell reflector

R: radius of the spherical shell reflector

ro: distance from the apex of the shell to the center of

mass of the shell

The disturbance torque induced by the solar radiation pressure on

1) for completely absorbing boom surface

Nyo 0
Npy = |Noay| = B, |~Ct| (5.17)
Npag b,

2) for completely reflecting boom surface

0

2

by . , sin3A
——5’-81n3lb-%bzczcos3lb-c§ (sind ,-———2)

3

2

cos?A _ c
—2) +—§-bzc,51n31b+—3-’-cos3lb

bi(cosA -

(5.18)

3) for general boom surface with arbitrary reflectivity properties

(5.19)




where

B,=-wr,(b,cosA +c,sind,) (12-12,)

Bf='2WI'b(l§-lgo)

ry: radius of the cylindrical column boom
l,: 1length of the boom
lp0¢ length of the shadowed boom

C

1L b >0
tan b, (b,>0)
A, = c
tan*-—= + n (b, <0)
bt
u e s adjatij essure on
t} | tellif . it .

1) for both absorbing and reflecting subsatellite surface

Fux at stx
-F_’“ = F“y = nwrg bt =‘_“ = sty ’ (5-20)
Fuz Ct Fstz

2) for general subsatellite surface with arbitrary reflectivity
properties

le
L= F’y =(1—e)£ﬂ+eF ’ (5’21)
F

here r, is the radius of the spherical subsatellite.
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n

The disturbance torque induced by the solar radiation pressure on

the subsa ite about the point O, is written:

1) for both completely absorbing and reflecting subsatellite
surface

Noax 0 Nggr
N, = |Ngay| = 1,wnrd |=Ce| = N, = |Ngg | . (5.22)
Ngaz bt Ny,

2) for general subsatellite surface with arbitrary reflectivity
properties

NSX
N, = |Ng| =(1-e) N, +eN,, , (5.23)
N

8SZ

where 1,: the instantaneous length of the tether

The djsturbance force induced by the solar radiation pressure on
the tether is:

1) for completely absorbing tether surface

FCGX at
F.y = |Fray| =2wr (b,cosd +c.8ind ) (1.-1,,)(b,| , (5.24)
Ft«ll CC

2) for completely reflecting tether surface

0 1
Frex cos®A c? 2
bi(cosA ,-———C)+—Lcos?A ,+=b,c,sin’A
Fop= |Fegy| = awr (1,-1,,)[ ¢ ¢ 3 3 e 3Tee °,
Fc[z bz sin3A

=Esin’d +cl(sind,- ) +2b,c,cos' ‘]

(5.25)




3) for general tether surface with arbitrary reflectivity
properties

F
Fo= |Fey| =(1-€) F veF,, (5.26)
F

where r.: the radius of the tether
l.o: the length of the shadowed tether

tan-iot (b,>0)
bt
A, = i

-1 t
tan B, +n (b.<0)

The disturbance torgue induced by solar radiation pressure on the
tether about the point O, is given by:

1) for completely absorbing tether surface

Neax 0
N,, = |Neay| =2wr,(b,cosh +c 8ink ) (12-12)|-C¢| , (5.27)
Neaz b,

2) for completely reflecting tether surface

0
Negy b? sin’A
t : 3 2 N ¢ 2 3
-—sin’A .-ct (sinA ,- -Zb,.c.cos’A
N = [Negy| =2wr (12-12) 3 e~ Ce ( J 3 ) -3 bece ¢
N cos?i c?
¢ bi(cosi z——3—°) +—3£cos3l. et %bcccsinu .

(5.28)




3) for general tether surface with arbitrary reflectivity
properties

Ntx
N, = |Ny| =(1-€) N ,+eN,, , (5.29)
N

tz

$.3 Modelling of the System Equations of Motion

Since the above analytical models of the solar radiation
disturbance are derived without taking the vibrations of the tether
and the shell into consideration, the system equations of motion
must also be developed based on this assumption.

Besides, it is known that the roll and yaw motion of the shell as
well as the out~-of-plane swing motion of the tether are decoupled
from the pitch motion of the shell and the in-plane swing motion of
the tether in the linear range. (3] Thus, after placing the solar
radiation disturbances derived previously into the right hand side
of the equation of motion and proceeding with a series of
complicated algebraic manipulations, the linear non-dimensional
equations for in-plane motion are obtained:

. N_+N, +h [F, +F. ~a(F_ +F.)]
0+ K,a”-3Q'0-k.e/ - B by x - sv_ Sx X (5.30)
wsJ,
N_ +N,
k,a”+¢/+30+3a-k,€ .= - ev' Tav (5.31)
mc(Hm-thx)
T F_+F
€i+2(k+p,)0-3ke +2ka’=3 (k+B ) + x , _ex'ex (5.32)

P 2
ltc‘m CJnSC lCCw Cn’sc




where

and ( )'=d( )/dr, ( )"=d( )'/dr, T=0t; €,=81,./1,., Al .=1l,-1,.

T
®

x: the tension of the tether

c: the orbital anqular velocity
mg: the mass of the subsatellite

m.: the mass of the tether

l,.: the command length of the tether

mg.: the total mass of the subsatellite and the tether
h,: coordinate of the length of the boom in the shell

reference systenm

Jx, Jy and J, are principal moments of inertia of the

shell

If we let

T

X

Af:3 (k{»px) +—2
1, 0'm,,




= NPY+be*hx[FSV*FCV"a (Fox+Fey) )

o Dy

wJ,
D = NCV+NSV
«

P w (Hy-h,I,)

D = FSX+FCX

¢ 2
1, .0'm,,
o

then the equations of in-plane motion become:

° k,a+6"-3Q%0-k.€ =D, (5.33)
k,a”+0"+3a+30-k,€ =D, (5.34)
° €.+2 (k+p ) &/+2ka’-3ke ,=af+D, (5.35)

The system equations of motion can be written in matrix form as:

&’=Ax+8u+CD (5.36)
o
where
x=(0,a,e,0,a,¢]7
o
and
0
A o1 B ° B 0
@ ' B A A ! B B, ! 1
1
It is obvious that if we consider:
u=u,+u. ., u,=af, , u=af,,
@
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and if u. can be found such that

Bu +CD=0

then the system equation (5.36) becomes

xf-_—qu-BEa:Axﬁ»BAfc ' (5.37)

and an all state feedback control law can be constructed:

af =-KX (5.38)

For the system parameters: m,=10,000 kg, m,=500 kg, m,=8.35,
1,,=1,000 m, and 80 meter boom, an optimal control u, which
minimizes the performance index

= [ (x70x+ujRu,) dt (5.39)
0

can be found by carefully selecting Q and R.
here x: state variable
Q: positive semi-definite state penalty matrix
R: positive definite control penalty matrix
Some typical simulation results demonstrate that the transient
response with the optimal gains obtained by suitable Q and R has
low overshoots, short settling times and rising times.
But the optimal control based only on the use of tether tension
can not realize Bu.+CD=0, since only one control exists. Thus, the
best way to proceed is to form an optimal compensator:

af =~ (B"B) "'B"CD (5.40)

Nevertheless, the disturbance Dg and D, can not be totally
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compensated in this way. Fortunately, the effects of Dg and D, are
not significant in lower orbit. On the other hand, the in-plane
motion of the shell and the tether are coupled with the
longitudinal motion of the tether. The system still can be
controlled to a satisfactory degree in lower orbit, which can be
demonstrated by some numerical simulation results (Fig. 5.7). If
the altitude level is increased to approximately 8600 km, it is
difficult to maintain the satisfactory pointing accuracy of the
shell reflector because of the significant effects of the
uncompensated disturbances. Therefore, in order to still control
the system in higher orbit with the presence of the solar radiation
disturbances, a hybrid control system, i.e. introducing some other
kind of actuator on the shell or on the subsatellite, is necessary.

5.4 Numerical Simulations

The numerical simulations are conducted based on the previous
assumptions. Since the solar incidence vector expressed in the
orbital reference system is a function of the orbital period and
the motions of the tethered system are varied periodically for the
most part, the disturbance torques induced by the solar radiation
pressure are periodic functions; and the period is close to the
orbital period, which is demonstrated by the numerical simulation
results (see Figs. 5.3, 5.4, 5.5 and 5.6). Comparing Figs. 5.3,
5.4, 5.5 and 5.6, we can easily see that the magnitude of in-plane
torques are much larger than those of out-of-plane torques, and the
maximum amplitude of the in-plane torques in the completely
reflecting case is greater than that in the completely absorbing
case. In the completely absorbing case, the torque acting on the
subsatellite about the Y, axis is larger than the torque acting on
the shell about the Y, axis, but vice versa in the completely
reflecting case. Therefore, if the solar radiation disturbances are
considered, the major disturbances are the in-plane torques acting
on the shell and the subsatellite because of the large illuminated
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area on the shell and the long moment arm from the center of mass
of the whole system to the subsatellite.

From Fig. 5.7, it is noticed that the effects of the solar
radiation disturbances are small in the low earth orbit (L.E.O),
since the steady state performance of the tethered system
controlled by the tether tension with the solar radiation
disturbances is almost the same as that without the solar radiation
disturbances. But in the high earth orbit (H.E.O), the higher the
altitude level is, the worse the performance of the steady state of
the tether system (see Fig. 5.8); therefore, the effects can not be
neglected, especially, when the altitude level is higher than about
8600 km. This suggests that the attitude and dynamic control law
for such a system in a high earth orbit or geosynchronous orbit
(G.E.0) should involve some kind of active (actuator) control on
the shell or subsatellite.

5.5 Conclusions

Several conclusions can be obtained from the numerical simulation
results:

1. The effects of the solar radiation disturbance in lower orbit
can be neglected but they are more significant in higher
orbits.

2. The tension control law with optimal control gains which are
obtained by carefully selecting the state penaltv matrix Q and
control penalty matrix R is able to maintain the satisfactory
pointing accuracy when the altitude is lower than about 8634
km, for a 100 m diameter shell reflector connected to a 1 km
tether at the end of an 80 m boom.

3. The maximum magnitude of the solar radiation disturbance
torqgue which disturbs the in-plane motion of the system is
larger than that which disturbs the out-of-plane motion of the
systen.

4, The dominant contribution to the solar disturbance torque is
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induced by the solar radiation pressure on the shell reflector
or the subsatellite.

In the case of a completely absorbing surface, i.e. €=0, the
magnitude of the disturbance torque is smaller than that in
the case of a completely reflecting surface, i.e. €=1.

In the case of a completely absorbing surface, the solar
radiation disturbance torque contributed by the subsatellite
is greater than that contributed by the reflector shell; and
vice versa in the case of a completely reflecting surface.
In order to control such a system to a satisfactory degree,
a hybrid control law based on both tension modulation and some
kind active (actuator) is needed.
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Out-of-plane Solar Radiation Torques
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Out-of-plane Solar Radiation Torques
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Mrz (N-m Msz IN-m}

0.045 { —0.012
i !
0.03- "l 0.008
0015+ /\ B S 0.004
~0.015 i \/‘— ~0.004
-003F +1-0.008
—0.0450 i L . é . 4 6—0.0 12
Time thr)
—=Mrz e Msz
MrZ: Torque on Shell about Zr Axis
Msz: Torque on Subsat. about Zt Axis
8 lez IN-ml (1E-4) Mtz IN-ml [{E-4) 8
o Yy
!

Mbz: Torque on Boom about Zr Axis
Mtz: Torque on Tether about Zt Axis Fig. S.6

5.25




Tether Control Response (L:E.Q)

Without Solar Disturbances

(2 Pltch (rad.)) Alta (rad.) 0.12
0.08 10.08
0.041|/ . {0.04
0 0 ]
~0.04 1 \/ 1-0.04
-0.08 "' ] -0.08
-0.12 —L 1 L - -0.12
0 1 2 3 4 -]

Orbit Perlod

Tether Control Response (L.E.O)

With Solar Disturbances

2 Pltch (rad.) Alfa (rad))

0.08 {0.08
0.04H\/ 40.04
o— 0
-0.04 +\/ 1-0.04
-o.oaf 1-0.08
-0.12 - . : ' -0.12
0 1 2 3 4 s

. Orbit Perlod

~— Plteh Alfa

Pitch: In-plane Motion of Shell
Alfa: In-plane Swing Motion of Tether

Fig. 5.7
5.26

e ————————




Tether Control-Respease- HEOH---- - -
With Solar Disturbance

Pitch {rad.) Alfa {rad)

0.2 e
0.08 4008
004K\:™ 1004

0 ._. A SRR IR AU 0
004k 1004
-008f {-008
w0t [ - : — -0.12

’ 1 rbit Period 4 5

~—-Pitch - Alfa
Altitude: 8634.0 km
B=i

o 1o Pich bad) Alfa pad)
008 2008
0'04*' 4004

0R " . . ;
-004 \/ 1004
'°'°8.L§ 1-008
' : —; L : -0.42

% ’ Trbit Period 4 5

—Pitch - Alfa

Altitude: 5421.8 km
Ret Fig. 5.8

5.27




6. CONCLUSIONS AND RECOMMENDATIONS

A momentum exchange controller which utilizes the time rate of
change of the flexible momentum relative to the rigid body motion
as a part of a feedback control law for maneuvering and vibration
suppression is proposed and analyzed. For this initial application
a model of a rigid hub (base) with cantilevered flexible appendages
undergoing a single-axis maneuver is examined. The lower and upper
bounds of the control gains for system stability are obtained based
on Lyapunov methods. For further vibration suppression an
additional independent flexible control system activing on the
flexible appendages can be included.

This momentum exchange control technique has also been
incorporated in an adaptive feedback control concept for the
retrieval of the subsatellite in the orbiting tethered
antenna/reflector system. The time rate of change of that part of
the angular momentum attributed to the tether motion from the
local vertical is used as a part of the feedback law in the antenna
attitude control system. This is used in conjunction with an open-
loop exponentially decreasing commanded length during retrieval.
Numerical simulation results verify the effectiveness of this
approach for the suppression of both the antenna and tether in-
plane motions at quick retrieval rates.

The optimal linear quadratic Gaussian (LQG) digital control of
the orbiting tethered antenna/reflector system is analyzed. 1In
this high order system (up to 40 state components) model the
flexibility of both the antenna and the tether areincluded. With

eight point actuators optimally positioned together with tether
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tension modulation it is seen that the degree of controllability is
very high. A method of measuring tether transverse motions is
proposed and is required to guarantee system observability. For
such a dynamic system with plant and measurement noises, the LQG
technique is ~ffective for designing the best combinations of
controller and observer pole 1locations for the control and
estimation processes. The discrete time data system is more
practical for the design of a controller based on an on-board
computer systen.

An analytical formulation of the modelling of the solar
radiation disturbance on a class of large tethered
antenna/reflector types of orbiting structures has been completed.
The effects of this disturbance during station keeping operations
have been evaluated based on numerical simulation of the equations
of motion. For the large orbiting 100 m. diameter reflector
considered and connected to a 1 km. long tether at the end of an 80
m hoom, it is seen that the effects of solar radiation in the lower
orbits can be negiected. A tether tension modulation control law
where the gains are based on the liner quadratic regulator theory
is able to maintain satisfactory pointing accuracy when the
altitude is lower than 8634 km. The dominant contribution to the
solar disturbance torque is induced by the solar radiation pressure
acting on the (shell) reflector or on the subsatellite. For the
higher altitudes a combination of tether tension modulation together
with active (actuator) control will be required.

It is suggested that further research needs to be conducted on

the application of the new momentum exchange and compensation
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control technique to flexible and telerobotic systems, beginning
with a simple two-link manipulator system in two dimensions,
followed by an extension to the three dimensional model. As a
further application of this concept, the use of a movable rigid
boom connected to the Shuttle (or reflector) and through which the
tether would Se deployed/retrieved should be studied. 1In order to
prove the feasibility of the tethered antenna/reflector
subsatellite system, test scale models for in-orbit experiments
need to be further studied. The incorporation of the momentum
exchange and compensation control technique with the test scale
model should be emphasized.

In order to fully implement a control system for the tethered
antenna/reflector, the design of a reduced order controller is
suggested. Both direct and indirect methods for designing a low
order controller which still achieve satisfactory performance and
robustness should be considered.

Further investigation of the effects of solar radiation on the
tethered antenna/reflector system should concentrate on the
related effects of solar heating and the practical implementation
of the required control/measurement systems. Measurement of in-
plane and out-of-plane angular displacements as well as the
relatively small 1levels of the differential tension required
present challenges to the current state-of-the-art capability.

Finally, questions related to the validation of the defensive
rapid retargeting results for the reflector system as a three
dimensional maneuver can be addressed by disigning some experiments

using the ASTREX facility at the Phillips Laboratory as a 3-D
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experimental test bed. These experiments would be based on
mathematical studies of rapid retargeting slews of the ASTREX
configuration, first based on a suitable reduced order model of the
flexible ASTREX and an implementation of the application of
Pontryagin's maximum principle based on the quasilinearization

method for solving the associated two point boundary value problem.
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